

Pooja Pawar

Mastering SQL: A Step-by-Step

Guide to Understanding

Structured Query Language

Pooja Pawar

Pooja Pawar

Table of Contents

1 Introduction to SQL ... 5

1.1 Data Definition Language (DDL) ... 7

1.2 Data Manipulation Language (DML) ... 7

2 Introduction to SQL Server .. 8

2.1 SQL Server Management Studio ... 9

2.1.1 Create a new Database.. 10

2.1.2 Queries ... 11

3 CREATE TABLE... 12

3.1 Database Modelling ... 14

3.2 Create Tables using the Designer Tools .. 16

3.3 SQL Constraints .. 16

3.3.1 PRIMARY KEY... 17

3.3.2 FOREIGN KEY ... 18

3.3.3 NOT NULL / Required Columns .. 21

3.3.4 UNIQUE ... 22

3.3.5 CHECK ... 24

3.3.6 DEFAULT ... 26

3.3.7 AUTO INCREMENT or IDENTITY ... 27

3.4 ALTER TABLE .. 28

4 INSERT INTO ... 30

5 UPDATE .. 32

2

Pooja Pawar

6 DELETE .. 34

7 SELECT .. 36

7.1 The ORDER BY Keyword ... 38

7.2 SELECT DISTINCT .. 39

7.3 The WHERE Clause ... 39

7.3.1 Operators .. 40

7.3.2 LIKE Operator .. 40

7.3.3 IN Operator ... 41

7.3.4 BETWEEN Operator ... 41

7.4 Wildcards ... 41

7.5 AND & OR Operators .. 42

7.6 SELECT TOP Clause ... 43

7.7 Alias ... 43

7.8 Joins ... 44

7.8.1 Different SQL JOINs ... 45

8 SQL Scripts .. 47

8.1 Using Comments .. 47

8.1.1 Single-­‐line comment .. 47

8.1.2 Multiple-­‐line comment ... 47

8.2 Variables .. 48

8.3 Built-­‐in Global Variables .. 49

8.3.1 @@IDENTITY... 49

8.4 Flow Control .. 50

8.4.1 IF – ELSE .. 50

8.4.2 WHILE ... 51

8.4.3 CASE .. 52

Pooja Pawar

8.4.4 CURSOR... 53

9 Views .. 55

9.1 Using the Graphical Designer ... 56

10 Stored Procedures .. 60

10.1 NOCOUNT ON/NOCOUNT OFF ... 63

11 Functions .. 65

11.1 Built-­‐in Functions ... 65

11.1.1 String Functions .. 65

11.1.2 Date and Time Functions ... 66

11.1.3 Mathematics and Statistics Functions .. 66

11.1.4 AVG() .. 67

11.1.5 COUNT() .. 67

11.1.6 The GROUP BY Statement ... 68

11.1.7 The HAVING Clause ... 69

11.2 User-­‐defined Functions ... 70

12 Triggers... 71

13 Communicate from other Applications ... 74

13.1 ODBC ... 74

13.2 Microsoft Excel .. 75

14 References .. 77

1 Introduction to SQL

SQL (Structured Query Language) is a database computer language designed for managing

data in relational database management systems (RDBMS).

SQL, is a standardized computer language that was originally developed by IBM for querying,

altering and defining relational databases, using declarative statements.

SQL is pronounced /ˌɛs kjuː ˈɛl/ (letter by letter) or /ˈsiːkwəəl/ (as a word).

What can SQL do?

 SQL can execute queries against a database

 SQL can retrieve data from a database

 SQL can insert records in a database

 SQL can update records in a database

 SQL can delete records from a database

5

Pooja Pawar

6 Introduction to SQL

 SQL can create new databases

 SQL can create new tables in a database

 SQL can create stored procedures in a database

 SQL can create views in a database

 SQL can set permissions on tables, procedures, and views

Even if SQL is a standard, many of the database systems that exist today implement their

own version of the SQL language. In this document we will use the Microsoft SQL Server as

an example.

There are lots of different database systems, or DBMS – Database Management Systems,

such as:

 Microsoft SQL Server

o Enterprise, Developer versions, etc.

o Express version is free of charge

 Oracle

 MySQL (Oracle, previously Sun Microsystems) -‐‐ MySQL can be used free of charge

(open source license), Web sites that use MySQL: YouTube, Wikipedia, Facebook

 Microsoft Access

 IBM DB2

 Sybase

 … lots of other systems

In this Tutorial we will focus on Microsoft SQL Server. SQL Server uses T-­‐SQL (Transact-­‐SQL).

T-­‐SQL is Microsoft's proprietary extension to SQL. T-­‐SQL is very similar to standard SQL, but

in addition it supports some extra functionality, built-­‐in functions, etc.

Pooja Pawar

7 Introduction to SQL

Other useful Tutorials about databases:

 Introduction to Database Systems

 Database Communication in LabVIEW

1.1 Data Definition Language (DDL)

The Data Definition Language (DDL) manages table and index structure. The most basic

items of DDL are the CREATE, ALTER, RENAME and DROP statements:

 CREATE creates an object (a table, for example) in the database.

 DROP deletes an object in the database, usually irretrievably.

 ALTER modifies the structure an existing object in various ways—for example, adding

a column to an existing table.

1.2 Data Manipulation Language (DML)

The Data Manipulation Language (DML) is the subset of SQL used to add, update and delete

data.

The acronym CRUD refers to all of the major functions that need to be implemented in a

relational database application to consider it complete. Each letter in the acronym can be

mapped to a standard SQL statement:

Operation SQL Description

Create INSERT INTO inserts new data into a database

Read (Retrieve) SELECT extracts data from a database

Update UPDATE updates data in a database

Delete (Destroy) DELETE deletes data from a database

8

2 Introduction to SQL Server

Microsoft is the vendor of SQL Server. The newest version is “SQL Server 2012”.

We have different editions of SQL Server, where SQL Server Express is free to download and

use.

SQL Server uses T-­‐SQL (Transact-­‐SQL). T-­‐SQL is Microsoft's proprietary extension to SQL.

T-­‐SQL is very similar to standard SQL, but in addition it supports some extra functionality,

built-­‐in functions, etc. T-­‐SQL expands on the SQL standard to include procedural

programming, local variables, various support functions for string processing, date

processing, mathematics, etc.

SQL Server consists of a Database Engine and a Management Studio (and lots of other stuff

which we will not mention here). The Database engine has no graphical interface -‐‐ it is just a

service running in the background of your computer (preferable on the server). The

Management Studio is graphical tool for configuring and viewing the information in the

database. It can be installed on the server or on the client (or both).

9 Introduction to SQL Server

Pooja Pawar

2.1 SQL Server Management Studio

SQL Server Management Studio is a GUI tool included with SQL Server for configuring,

managing, and administering all components within Microsoft SQL Server. The tool includes

both script editors and graphical tools that work with objects and features of the server. As

mentioned earlier, version of SQL Server Management Studio is also available for SQL Server

Express Edition, for which it is known as SQL Server Management Studio Express.

A central feature of SQL Server Management Studio is the Object Explorer, which allows the

user to browse, select, and act upon any of the objects within the server. It can be used to

visually observe and analyze query plans and optimize the database performance, among

others. SQL Server Management Studio can also be used to create a new database, alter any

existing database schema by adding or modifying tables and indexes, or analyze

performance. It includes the query windows which provide a GUI based interface to write

and execute queries.

When creating SQL commands and queries, the “Query Editor” (select “New Query” from

the Toolbar) is used (shown in the figure above).

With SQL and the “Query Editor” we can do almost everything with code, but sometimes it is

also a good idea to use the different Designer tools in SQL to help us do the work without

coding (so much).

10 Introduction to SQL Server

Pooja Pawar

2.1.1 Create a new Database

It is quite simple to create a new database in Microsoft SQL Server. Just right-­‐click on the

“Databases” node and select “New Database…”

There are lots of settings you may set regarding your database, but the only information you

must fill in is the name of your database:

11 Introduction to SQL Server

Pooja Pawar

You may also use the SQL language to create a new database, but sometimes it is easier to

just use the built-­‐in features in the Management Studio.

2.1.2 Queries

In order to make a new SQL query, select the “New Query” button from the Toolbar.

Here we can write any kind of queries that is supported by the SQL language.

12

3 CREATE TABLE

Before you start implementing your tables in the database, you should always spend some

time design your tables properly using a design tool like, e.g., ERwin, Toad Data Modeler,

PowerDesigner, Visio, etc. This is called Database Modeling.

The CREATE TABLE statement is used to create a table in a database.

Syntax:

The data type specifies what type of data the column can hold.

CREATE TABLE table_name

(

column_name1 data_type,

column_name2 data_type,

column_name3 data_type,

....

)

13 CREATE TABLE

Pooja Pawar

You have special data types for numbers, text dates, etc.

Examples:

 Numbers: int, float

 Text/Stings: varchar(X) – where X is the length of the string

 Dates: datetime

 etc.

Example:

We want to create a table called “CUSTOMER” which has the following columns and data

types:

Best practice:

When creating tables you should consider following these guidelines:

 Tables: Use upper case and singular form in table names – not plural, e.g.,

“STUDENT” (not students)

 Columns: Use Pascal notation, e.g., “StudentId”

 Primary Key:

o If the table name is “COURSE”, name the Primary Key column “CourseId”, etc.

CREATE TABLE CUSTOMER

(

CustomerId int IDENTITY(1,1) PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar(50) NULL,

Phone varchar(50) NULL,

)

GO

14 CREATE TABLE

Pooja Pawar

o “Always” use Integer and Identity(1,1) for Primary Keys. Use UNIQUE

constraint for other columns that needs to be unique, e.g. RoomNumber

 Specify Required Columns (NOT NULL) – i.e., which columns that need to have data

or not

 Standardize on few/these Data Types: int, float, varchar(x), datetime, bit

 Use English for table and column names

 Avoid abbreviations! (Use RoomNumber – not RoomNo, RoomNr, ...)

3.1 Database Modelling

As mention in the beginning of the chapter, you should always start with database modelling

before you start implementing the tables in a database sytem.

Below we see a database model in created with ERwin.

With this tool we can transfer the database model as tables into different database systems,

such as e.g., SQL Server. CA ERwin Data Modeler Community Edition is free with a 25 objects

limit. It has support for Oracle, SQL Server, MySQL, ODBC and Sybase.

15 CREATE TABLE

Pooja Pawar

Below we see the same tables inside the design tool in SQL Server.

16 CREATE TABLE

Pooja Pawar

3.2 Create Tables using the Designer Tools

Even if you can do “everything” using the SQL language, it is sometimes easier to do it in the

designer tools in the Management Studio in SQL Server.

Instead of creating a script you may as well easily use the designer for creating tables.

Step1: Select “New Table …”:

Step2: Next, the table designer pops up where you can add columns, data types, etc.

In this designer we may also specify Column Names, Data Types, etc.

Step 3: Save the table by clicking the Save button.

3.3 SQL Constraints

Constraints are used to limit the type of data that can go into a table.

17 CREATE TABLE

Pooja Pawar

Constraints can be specified when a table is created (with the CREATE TABLE statement) or

after the table is created (with the ALTER TABLE statement).

Here are the most important constraints:

 PRIMARY KEY

 NOT NULL

 UNIQUE

 FOREIGN KEY

 CHECK

 DEFAULT

 IDENTITY

In the sections below we will explain some of these in detail.

3.3.1 PRIMARY KEY

The PRIMARY KEY constraint uniquely identifies each record in a database table.

Primary keys must contain unique values. It is normal to just use running numbers, like 1, 2,

3, 4, 5, … as values in Primary Key column. It is a good idea to let the system handle this for

you by specifying that the Primary Key should be set to identity(1,1). IDENTITY(1,1) means

the first value will be 1 and then it will increment by 1.

Each table should have a primary key, and each table can have only ONE primary key.

If we take a closer look at the CUSTOMER table created earlier:

As you see we use the “Primary Key” keyword to specify that a column should be the

Primary Key.

CREATE TABLE [CUSTOMER]

(

CustomerId int IDENTITY(1,1) PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar(50) NULL,

Phone varchar(50) NULL,

)

GO

18 CREATE TABLE

Pooja Pawar

Setting Primary Keys in the Designer Tools:

If you use the Designer tools in SQL Server you can easily set the primary Key in a table just

by right-­‐click and select “Set primary Key”.

The primary Key column will then have a small key in front to illustrate that this column is

a Primary Key.

3.3.2 FOREIGN KEY

A FOREIGN KEY in one table points to a PRIMARY KEY in another table.

Example:

We will create a CREATE TABLE script for these tables:

19 CREATE TABLE

Pooja Pawar

SCHOOL:

CLASS:

The FOREIGN KEY constraint is used to prevent actions that would destroy links between

tables.

The FOREIGN KEY constraint also prevents that invalid data from being inserted into the

foreign key column, because it has to be one of the values contained in the table it points to.

Setting Foreign Keys in the Designer Tools:

If you want to use the designer, right-­‐click on the column that you want to be the Foreign

Key and select “Relationships…”:

CREATE TABLE SCHOOL

(

SchoolId int IDENTITY(1,1) PRIMARY KEY,

SchoolName varchar(50) NOT NULL UNIQUE,

Description varchar(1000) NULL,

Address varchar(50) NULL,

Phone varchar(50) NULL,

PostCode varchar(50) NULL,

PostAddress varchar(50) NULL,

)

GO

CREATE TABLE CLASS

(

ClassId int IDENTITY(1,1) PRIMARY KEY,

SchoolId int NOT NULL FOREIGN KEY REFERENCES SCHOOL (SchoolId),

ClassName varchar(50) NOT NULL UNIQUE,

Description varchar(1000) NULL,

)

GO

20 CREATE TABLE

Pooja Pawar

The following window pops up (Foreign Key Relationships):

Click on the “Add” button and then click on the small “…” button. Then the following window

pops up (Tables and Columns):

21 CREATE TABLE

Pooja Pawar

Here you specify the primary Key Column in the Primary Key table and the Foreign Key

Column in the Foreign Key table.

3.3.3 NOT NULL / Required Columns

The NOT NULL constraint enforces a column to NOT accept NULL values.

The NOT NULL constraint enforces a field to always contain a value. This means that you

cannot insert a new record, or update a record without adding a value to this field.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]

(

CustomerId int IDENTITY(1,1) PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar(50) NULL,

Phone varchar(50) NULL,

)

GO

22 CREATE TABLE

Pooja Pawar

We see that “CustomerNumber”, “LastName” and “FirstName” is set to “NOT NULL”, this

means these columns needs to contain data. While “AreaCode”, “Address” and “Phone” may

be left empty, i.e, they don’t need to filled out.

Note! A primary key column cannot contain NULL values.

Setting NULL/NOT NULL in the Designer Tools:

In the Table Designer you can easily set which columns that should allow NULL or not:

3.3.4 UNIQUE

The UNIQUE constraint uniquely identifies each record in a database table. The UNIQUE and

PRIMARY KEY constraints both provide a guarantee for uniqueness for a column or set of

columns.

A PRIMARY KEY constraint automatically has a UNIQUE constraint defined on it.

Note! You can have many UNIQUE constraints per table, but only one PRIMARY KEY

constraint per table.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]

(

CustomerId int IDENTITY(1,1) PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

23 CREATE TABLE

Pooja Pawar

We see that the “CustomerNumber” is set to UNIQUE, meaning each customer must have a

unique Customer Number. Example:

Setting UNIQUE in the Designer Tools:

If you want to use the designer, right-­‐click on the column that you want to be UNIQUE and

select “Indexes/Keys…”:

Then click “Add” and then set the “Is Unique” property to “Yes”:

Address varchar(50) NULL,

Phone varchar(50) NULL,

)

GO

24 CREATE TABLE

Pooja Pawar

3.3.5 CHECK

The CHECK constraint is used to limit the value range that can be placed in a column.

If you define a CHECK constraint on a single column it allows only certain values for this

column.

If you define a CHECK constraint on a table it can limit the values in certain columns based

on values in other columns in the row.

Example:

In this case, when we try to insert a Customer Number less than zero we will get an error

message.

Setting CHECK constraints in the Designer Tools:

If you want to use the designer, right-­‐click on the column where you want to set the

constraints and select “Check Constraints…”:

CREATE TABLE [CUSTOMER]

(

CustomerId int IDENTITY(1,1) PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE CHECK(CustomerNumber>0),

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar(50) NULL,

Phone varchar(50) NULL,

)

GO

25 CREATE TABLE

Pooja Pawar

Then click “Add” and then click “…” in order to open the Expression window:

In the Expression window you can type in the expression you want to use:

26 CREATE TABLE

Pooja Pawar

3.3.6 DEFAULT

The DEFAULT constraint is used to insert a default value into a column.

The default value will be added to all new records, if no other value is specified.

Example:

Setting DEFAULT values in the Designer Tools:

Select the column and go into the “Column Properties”:

CREATE TABLE [CUSTOMER]

(

CustomerId int IDENTITY(1,1) PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

Country varchar(20) DEFAULT 'Norway',

AreaCode int NULL,

Address varchar(50) NULL,

Phone varchar(50) NULL,

)

GO

27 CREATE TABLE

Pooja Pawar

3.3.7 AUTO INCREMENT or IDENTITY

Very often we would like the value of the primary key field to be created automatically every

time a new record is inserted.

Example:

As shown below, we use the IDENTITY() for this. IDENTITY(1,1) means the first value will be 1

and then it will increment by 1.

Setting identity(1,1) in the Designer Tools:

We can use the designer tools to specify that a Primary Key should be an identity column

that is automatically generated by the system when we insert data in to the table.

Click on the column in the designer and go into the Column Properties window:

CREATE TABLE CUSTOMER

(

CustomerId int IDENTITY(1,1) PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar(50) NULL,

Phone varchar(50) NULL,

)

GO

28 CREATE TABLE

Pooja Pawar

3.4 ALTER TABLE

The ALTER TABLE statement is used to add, delete, or modify columns in an existing table.

To add a column in a table, use the following syntax:

To delete a column in a table, use the following syntax (notice that some database systems

don't allow deleting a column):

To change the data type of a column in a table, use the following syntax:

If we use CREATE TABLE and the table already exists in the table we will get an error

message, so if we combine CREATE TABLE and ALTER TABLE we can create robust database

scripts that gives no errors, as the example shown below:

ALTER TABLE table_name

ADD column_name datatype

ALTER TABLE table_name

DROP COLUMN column_name

ALTER TABLE table_name

ALTER COLUMN column_name datatype

if not exists (select * from dbo.sysobjects where id = object_id(N'[CUSTOMER]') and

OBJECTPROPERTY(id, N'IsUserTable') = 1)

CREATE TABLE CUSTOMER

(

CustomerId int PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar(50) NULL,

Phone varchar(50) NULL,

)

GO

if exists(select * from dbo.syscolumns where id = object_id(N'[CUSTOMER]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1 and name = 'CustomerId')

ALTER TABLE CUSTOMER ALTER COLUMN CustomerId int

Else

ALTER TABLE CUSTOMER ADD CustomerId int

GO

if exists(select * from dbo.syscolumns where id = object_id(N'[CUSTOMER]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1 and name = 'CustomerNumber')

ALTER TABLE CUSTOMER ALTER COLUMN CustomerNumber int

29 CREATE TABLE

Pooja Pawar

Else

ALTER TABLE CUSTOMER ADD CustomerNumber int

GO

...

4 INSERT INTO

The INSERT INTO statement is used to insert a new row in a table.

It is possible to write the INSERT INTO statement in two forms.

The first form doesn't specify the column names where the data will be inserted, only their

values:

Example:

The second form specifies both the column names and the values to be inserted:

This form is recommended!

Example:

Insert Data Only in Specified Columns:

It is also possible to only add data in specific columns.

Example:

Note! You need at least to include all columns that cannot be NULL.

We remember the table definition for the CUSTOMER table:

30

INSERT INTO CUSTOMER (CustomerNumber, LastName, FirstName, AreaCode,

Address, Phone)

VALUES ('1000', 'Smith', 'John', 12, 'California', '11111111')

INSERT INTO CUSTOMER (CustomerNumber, LastName, FirstName)

VALUES ('1000', 'Smith', 'John')

INSERT INTO table_name

VALUES (value1, value2, value3,...)

INSERT INTO CUSTOMER VALUES ('1000', 'Smith', 'John', 12, 'California',

'11111111')

INSERT INTO table_name (column1, column2, column3,...)

VALUES (value1, value2, value3,...)

31 INSERT INTO

i.e., we need to include at least “CustomerNumber”, “LastName” and “FirstName”.

“CustomerId” is set to “identity(1,1)” and therefore values for this column are generated by

the system.

Insert Data in the Designer Tools:

When you have created the tables you can easily insert data into them using the designer

tools. Right-­‐click on the specific table and select “Edit Top 200 Rows”:

Then you can enter data in a table format, similar to, e.g., MS Excel:

Pooja Pawar

5 UPDATE

The UPDATE statement is used to update existing records in a table.

The syntax is as follows:

Note! Notice the WHERE clause in the UPDATE syntax. The WHERE clause specifies which

record or records that should be updated. If you omit the WHERE clause, all records will be

updated!

Example:

Before update:

After update:

If you don’t include the WHERE clause the result becomes:

→ So make sure to include the WHERE clause when using the UPDATE command!

32

UPDATE table_name

SET column1=value, column2=value2,...

WHERE some_column=some_value

update CUSTOMER set AreaCode=46 where CustomerId=2

33 UPDATE

Update Data in the Designer Tools:

The same way you insert data you can also update the data. Right-­‐click on the specific table

and select “Edit Top 200 Rows”:

Then you can change your data:

Pooja Pawar

6 DELETE

The DELETE statement is used to delete rows in a table.

Syntax:

Note! Notice the WHERE clause in the DELETE syntax. The WHERE clause specifies which

record or records that should be deleted. If you omit the WHERE clause, all records will be

deleted!

Example:

Before delete:

After delete:

Delete All Rows:

It is possible to delete all rows in a table without deleting the table. This means that the

table structure, attributes, and indexes will be intact:

Note! Make sure to do this only when you really mean it! You cannot UNDO this statement!

Delete Data in the Designer Tools:

You delete data in the designer by right-­‐click on the row and select “Delete”:

34

DELETE FROM table_name

WHERE some_column=some_value

delete from CUSTOMER where CustomerId=2

DELETE FROM table_name

35 DELETE

Pooja Pawar

7 SELECT

The SELECT statement is probably the most used SQL command. The SELECT statement is

used for retrieving rows from the database and enables the selection of one or many rows or

columns from one or many tables in the database.

We will use the CUSTOMER table as an example.

The CUSTOMER table has the following columns:

The CUSTOMER table contains the following data:

Example:

This simple example gets all the data in the table CUSTOMER. The symbol “*” is used when

you want to get all the columns in the table.

36

select * from CUSTOMER

37 SELECT

Pooja Pawar

If you only want a few columns, you may specify the names of the columns you want to

retrieve, example:

So in the simplest form we can use the SELECT statement as follows:

If we want all columns, we use the symbol “*”

Note! SQL is not case sensitive. SELECT is the same as select.

The full syntax of the SELECT statement is complex, but the main clauses can be summarized

as:

It seems complex, but we will take the different parts step by step in the next sections.

Select Data in the Designer Tools:

Right-­‐click on a table and select “Select Top 1000 Rows”:

The following will appear:

select CustomerId, LastName, FirstName from CUSTOMER

select <column_names> from <table_names>

SELECT

[ALL | DISTINCT]

[TOP (expression) [PERCENT] [WITH TIES]]

select_list [INTO new_table]

[FROM table_source] [WHERE search_condition]

[GROUP BY group_by_expression]

[HAVING search_condition]

[ORDER BY order_expression [ASC | DESC]]

38 SELECT

Pooja Pawar

A Select query is automatically created for you which you can edit if you want to.

7.1 The ORDER BY Keyword

If you want the data to appear in a specific order you need to use the “order by” keyword.

Example:

You may also sort by several columns, e.g. like this:

If you use the “order by” keyword, the default order is ascending (“asc”). If you want the

order to be opposite, i.e., descending, then you need to use the “desc” keyword.

select * from CUSTOMER order by LastName

select * from CUSTOMER order by Address, LastName

39 SELECT

Pooja Pawar

7.2 SELECT DISTINCT

In a table, some of the columns may contain duplicate values. This is not a problem,

however, sometimes you will want to list only the different (distinct) values in a table.

The DISTINCT keyword can be used to return only distinct (different) values.

The syntax is as follows:

Example:

7.3 The WHERE Clause

The WHERE clause is used to extract only those records that fulfill a specified criterion.

The syntax is as follows:

Example:

select * from CUSTOMER order by LastName desc

select distinct <column_names> from <table_names>

select <column_names>

from <table_name>

where <column_name> operator value

select distinct FirstName from CUSTOMER

select * from CUSTOMER where CustomerNumber='1001'

40 SELECT

Pooja Pawar

Note! SQL uses single quotes around text values, as shown in the example above.

7.3.1 Operators

With the WHERE clause, the following operators can be used:

Operator Description

= Equal

<> Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

LIKE Search for a pattern

IN If you know the exact value you want to return for at least one of the
columns

Examples:

7.3.2 LIKE Operator

The LIKE operator is used to search for a specified pattern in a column.

Syntax:

Example:

Note! The "%" sign can be used to define wildcards (missing letters in the pattern) both

before and after the pattern.

SELECT column_name(s)

FROM table_name

WHERE column_name LIKE pattern

select * from CUSTOMER where AreaCode>30

select * from CUSTOMER where LastName like 'J%'

41 SELECT

Pooja Pawar

You may also combine with the NOT keyword, example:

7.3.3 IN Operator

The IN operator allows you to specify multiple values in a WHERE clause.

Syntax:

7.3.4 BETWEEN Operator

The BETWEEN operator selects a range of data between two values. The values can be

numbers, text, or dates.

Syntax:

7.4 Wildcards

SQL wildcards can substitute for one or more characters when searching for data in a

database.

Note! SQL wildcards must be used with the SQL LIKE operator.

With SQL, the following wildcards can be used:

select * from CUSTOMER where LastName like '%a%'

SELECT column_name(s)

FROM table_name

WHERE column_name IN (value1,value2,...)

select * from CUSTOMER where LastName not like '%a%'

SELECT column_name(s)

FROM table_name

WHERE column_name

BETWEEN value1 AND value2

42 SELECT

Pooja Pawar

Wildcard Description

% A substitute for zero or more characters

_ A substitute for exactly one character

[charlist] Any single character in charlist

[^charlist]
or
[!charlist]

Any single character not in charlist

Examples:

7.5 AND & OR Operators

The AND operator displays a record if both the first condition and the second condition is

true.

The OR operator displays a record if either the first condition or the second condition is true.

Examples:

Combining AND & OR:

select * from CUSTOMER where LastName='Smith' and FirstName='John'

SELECT * FROM CUSTOMER WHERE LastName LIKE 'J_cks_n'

SELECT * FROM CUSTOMER WHERE CustomerNumber LIKE '[10]%'

select * from CUSTOMER where LastName='Smith' or FirstName='John'

43 SELECT

Pooja Pawar

You can also combine AND and OR (use parenthesis to form complex expressions).

Example:

7.6 SELECT TOP Clause

The TOP clause is used to specify the number of records to return.

The TOP clause can be very useful on large tables with thousands of records. Returning a

large number of records can impact on performance.

Syntax:

Examples:

You can also specify in percent:

This is very useful for large tables with thousands of records

7.7 Alias

select * from CUSTOMER

where LastName='Smith' and (FirstName='John' or FirstName='Smith')

SELECT TOP number|percent column_name(s)

FROM table_name

select TOP 1 * from CUSTOMER

select TOP 60 percent * from CUSTOMER

44 SELECT

Pooja Pawar

You can give a table or a column another name by using an alias. This can be a good thing to

do if you have very long or complex table names or column names.

An alias name could be anything, but usually it is short.

SQL Alias Syntax for Tables:

SQL Alias Syntax for Columns:

7.8 Joins

SQL joins are used to query data from two or more tables, based on a relationship between

certain columns in these tables.

SELECT column_name(s)

FROM table_name

AS alias_name

SELECT column_name AS alias_name

FROM table_name

45 SELECT

Pooja Pawar

7.8.1 Different SQL JOINs

Before we continue with examples, we will list the types of JOIN you can use, and the

differences between them.

 JOIN: Return rows when there is at least one match in both tables

 LEFT JOIN: Return all rows from the left table, even if there are no matches in the

right table

 RIGHT JOIN: Return all rows from the right table, even if there are no matches in the

left table

 FULL JOIN: Return rows when there is a match in one of the tables

Example:

Given 2 tables:

 SCHOOL

 CLASS

The diagram is shown below:

We want to get the following information using a query:

SchoolName ClassName

… …

… …

In order to get information from more than one table we need to use the JOIN. The JOIN is

used to join the primary key in one table with the foreign key in another table.

46 SELECT

Pooja Pawar

select

SCHOOL.SchoolName,

CLASS.ClassName

from

SCHOOL

INNER JOIN CLASS ON SCHOOL.SchoolId = CLASS.SchoolId

47

8 SQL Scripts

A SQL script is a collection of SQL statements that you can execute in one operation. You can

use any kind of SQL commands, such as insert, select, delete, update, etc. In addition you

can define and use variables, and you may also use program flow like If-­‐Else, etc. You may

also add comments to make the script easier to read and understand.

8.1 Using Comments

Using comments in you SQL script is important to make the script easier to read and

understand.

In SQL we can use 2 different kinds of comments:

 Single-­‐line comment

 Multiple-­‐line comment

8.1.1 Single-­‐line comment

We can comment one line at the time using “-­­-­­” before the text you want to comment out.

Syntax:

8.1.2 Multiple-­‐line comment

We can comment several line using “/*” in the start of the comment and “*/” in the end of

the comment.

Syntax:

-- text_of_comment

/*

text_of_comment

text_of_comment

*/

Pooja Pawar

48 SQL Scripts

8.2 Variables

The ability to using variables in SQL is a powerful feature. You need to use the keyword

DECLARE when you want to define the variables. Local variables must have the the symbol

“@” as a prefix. You also need to specify a data type for your variable (int, varchar(x), etc.).

Syntax for declaring variables:

If you have more than one variable you want to declare:

When you want to assign values to the variable, you must use either a SET or a SELECT

statement.

Example:

If you want to see the value for a variable, you can e.g., use the PRINT command like this:

The following will be shown in SQL Server:

Assigning variables with a value from a SELECT statement is very useful.

declare @myvariable int

set @myvariable=4

declare @local_variable data_type

declare

@myvariable1 data_type,

@myvariable2 data_type,

…

declare @myvariable int

set @myvariable=4

print @myvariable

Pooja Pawar

49 SQL Scripts

We use the CUSTOMER table as an example:

You can assign a value to the variable from a select statement like this:

You can also use a variable in the WHERE clause LIKE, e.g., this:

8.3 Built-­‐in Global Variables

SQL have lots of built-­‐in variables that are very useful to use in queries and scripts.

8.3.1 @@IDENTITY

After an INSERT, SELECT INTO, or bulk copy statement is completed, @@IDENTITY contains

the last identity value that is generated by the statement. If the statement did not affect any

tables with identity columns, @@IDENTITY returns NULL. If multiple rows are inserted,

generating multiple identity values, @@IDENTITY returns the last identity value generated.

Example:

Given to tables; SCHOOL and COURSE:

declare @mylastname varchar(50)

select @mylastname=LastName from CUSTOMER where CustomerId=2

print @mylastname

declare @find varchar(30)

set @find = 'J%'

select * from CUSTOMER

where LastName LIKE @find

Pooja Pawar

50 SQL Scripts

SCHOOL table: COURSE table:

We want to insert a new School into the SCHOOL table and we want to insert 2 new Courses

in the COURSE table that belong to the School we insert. To find the “SchoolId” we can use

the @@IDENTITY variable:

The result becomes:

SCHOOL table: COURSE table:

8.4 Flow Control

As with other programming languages you can use different kind of flow control, such as

IF-­‐ELSE, WHILE, etc, which is very useful.

8.4.1 IF – ELSE

The IF-­‐ELSE is very useful. Below we see an example:

declare @SchoolId int

-- Insert Data into SCHOOL table

insert into SCHOOL(SchoolName) values ('MIT')

select @SchoolId = @@IDENTITY

-- Insert Courses for the specific School above in the COURSE table

insert into COURSE(SchoolId,CourseName) values (@SchoolId, 'MIT-101')

insert into COURSE(SchoolId,CourseName) values (@SchoolId, 'MIT-201')

declare @customerNumber int

select @customerNumber=CustomerNumber from CUSTOMER

where CustomerId=2

Pooja Pawar

51 SQL Scripts

BEGIN…END:

If more than one line of code is to be executed within an IF sentence you need to use

BEGIN…END.

Example:

8.4.2 WHILE

We can also use WHILE, which is known from other programming languages.

Example:

We are using the CUSTOMER table:

and the following query:

if @customerNumber > 1000

print 'The Customer Number is larger than 1000'

else

print 'The Customer Number is not larger than 1000'

select @customerNumber=CustomerNumber from CUSTOMER where CustomerId=2

if @customerNumber > 1000

begin

print 'The Customer Number is larger than 1000'

update CUSTOMER set AreaCode=46 where CustomerId=2

end

else

print 'The Customer Number is not larger than 1000'

while (select AreaCode from CUSTOMER where CustomerId=1) < 20

begin

update CUSTOMER set AreaCode = AreaCode + 1

end

select * from CUSTOMER

Pooja Pawar

52 SQL Scripts

As you can see the code inside the WHILE loop is executed as long as “AreaCode” for

CustomerId=1 is less than 20. For each iteration is the “AreaCode” for that customer

incremented with 1.

8.4.3 CASE

The CASE statement evaluates a list of conditions and returns one of multiple possible result

expressions.

Example:

We have a “GRADE” table that contains the grades for each student in different courses:

In the “GRADE” table is the grades stored as numbers, but since the students get grades with

the letters A..F (A=5, B=4, C=3, D=2, E=1, F=0), we want to convert the values in the table

into letters using a CASE statement:

select GradeId, StudentId, CourseId, Grade from GRADE

select

GradeId,

StudentId,

CourseId,

case Grade

when 5 then 'A'

when 4 then 'B'

when 3 then 'C'

when 2 then 'D'

when 1 then 'E'

when 0 then 'F'

else '-'

end as Grade

from

GRADE

Pooja Pawar

53 SQL Scripts

8.4.4 CURSOR

In advances scripts, CURSORs may be very useful. A CURSOR works like an advanced WHILE

loop which we use to iterate through the records in one or more tables.

CURSORS are used mainly in stored procedures, triggers, and SQL scripts.

Example:

We use the CUSTOMER table as an example:

We will create a CURSOR that iterate through all the records in the CUSTOMER table and

check if the Phone number consists of 8 digits, if not the script will replace the invalid Phone

number with the text “Phone number is not valid”.

Here is the SQL Script using a CURSOR:

DECLARE

@CustomerId int,

@phone varchar(50)

DECLARE db_cursor CURSOR

FOR SELECT CustomerId from CUSTOMER

OPEN db_cursor

FETCH NEXT FROM db_cursor INTO @CustomerId

WHILE @@FETCH_STATUS = 0

BEGIN

select @phone=Phone from CUSTOMER where CustomerId=@CustomerId

if LEN(@phone) < 8

update CUSTOMER set Phone='Phone number is not valid' where

CustomerId=@CustomerId

Pooja Pawar

54 SQL Scripts

The CUSTOMER table becomes:

Creating and using a CURSOR includes these steps:

 Declare SQL variables to contain the data returned by the cursor. Declare one

variable for each result set column.

 Associate a SQL cursor with a SELECT statement using the DECLARE CURSOR

statement. The DECLARE CURSOR statement also defines the characteristics of the

cursor, such as the cursor name and whether the cursor is read-­‐only or forward-­‐only.

 Use the OPEN statement to execute the SELECT statement and populate the cursor.

 Use the FETCH INTO statement to fetch individual rows and have the data for each

column moved into a specified variable. Other SQL statements can then reference

those variables to access the fetched data values.

 When you are finished with the cursor, use the CLOSE statement. Closing a cursor

frees some resources, such as the cursor's result set and its locks on the current row.

The DEALLOCATE statement completely frees all resources allocated to the cursor,

including the cursor name.

FETCH NEXT FROM db_cursor INTO @CustomerId

END

CLOSE db_cursor

DEALLOCATE db_cursor

55

9 Views

Views are virtual table for easier access to data stored in multiple tables.

Syntax for creating a View:

... but it might be easier to do it in the graphical view designer that are built into SQL

Management Studio.

Syntax for using a View:

As shown above, we use a VIEW just like we use an ordinary table.

CREATE VIEW <ViewName>

AS

…

select * from <MyView> where …

Pooja Pawar

56 Views

Example:

We use the SCHOOL and CLASS tables as an example for our View. We want to create a View

that lists all the existing schools and the belonging classes.

We create the VIEW using the CREATE VIEW command:

Note! In order to get information from more than one table, we need to link the tables

together using a JOIN.

9.1 Using the Graphical Designer

We create the same View using the graphical designer in SQL Server Management Studio:

CREATE VIEW SchoolView

AS

SELECT

SCHOOL.SchoolName,

CLASS.ClassName

FROM

SCHOOL

INNER JOIN CLASS ON SCHOOL.SchoolId = CLASS.SchoolId

Pooja Pawar

57 Views

Step 1: Right-­‐click on the View node and select “New View…”:

Step 2: Add necessary tables:

Pooja Pawar

58 Views

Step 3: Add Columns, etc.

Step 4: Save the VIEW:

Pooja Pawar

59 Views

Step 5: Use the VIEW in a query:

select * from SchoolView

10 Stored Procedures

A Stored Procedure is a precompiled collection of SQL statements. In a stored procedure you

can use if sentence, declare variables, etc.

Syntax for creating a Stored Procedure:

Note! You need to use the symbol “@” before variable names.

Syntax for using a Stored Procedure:

Example:

60

EXECUTE <ProcedureName(…)>

CREATE PROCEDURE <ProcedureName>

@<Parameter1> <datatype>

…

declare

@myVariable <datatype>

… Create your Code here

61 Stored Procedures

Pooja Pawar

We use the SCHOOL and CLASS tables as an example for our Stored Procedure. We want to

create a Stored Procedure that lists all the existing schools and the belonging classes.

We create the Stored Procedure as follows:

When we have created the Stored Procedure we can run (or execute) the Stored procedure

using the execute command like this:

We can also create a Store Procedure with input parameters.

Example:

CREATE PROCEDURE GetAllSchoolClasses

AS

select

SCHOOL.SchoolName,

CLASS.ClassName

from

SCHOOL

inner join CLASS on SCHOOL.SchoolId = CLASS.SchoolId

order by SchoolName, ClassName

execute GetAllSchoolClasses

62 Stored Procedures

Pooja Pawar

We use the same tables in this example (SCHOOL and CLASS) but now we want to list all

classes for a specific school.

The Stored Procedure becomes:

We run (or execute) the Stored Procedure:

or:

When we try to create a Stored Procedure that already exists we get the following error

message:

There is already an object named 'GetSpecificSchoolClasses' in the database.

Then we first need to delete (or DROP) the old Stored Procedure before we can recreate it

again.

We can do this manually in the Management Studio in SQL like this:

CREATE PROCEDURE GetSpecificSchoolClasses

@SchoolName varchar(50)

AS

select

SCHOOL.SchoolName,

CLASS.ClassName

from

SCHOOL

inner join CLASS on SCHOOL.SchoolId = CLASS.SchoolId

where SchoolName=@SchoolName

order by ClassName

execute GetSpecificSchoolClasses 'TUC'

execute GetSpecificSchoolClasses 'NTNU'

63 Stored Procedures

Pooja Pawar

A better solution is to add code for this in our script, like this:

So we use CREATE PROCEDURE to create a Stored Procedure and we use DROP PROCEDURE

to delete a Stored Procedure.

10.1 NOCOUNT ON/NOCOUNT OFF

In advanced Stored Procedures and Script, performance is very important. Using SET

NOCOUNT ON and SET NOCOUNT OFF makes the Stored Procedure run faster.

SET NOCOUNT ON stops the message that shows the count of the number of rows affected

by a Transact-­‐SQL statement or stored procedure from being returned as part of the result

set.

IF EXISTS (SELECT name

FROM sysobjects

WHERE name = GetSpecificSchoolClasses '

AND type = 'P')

DROP PROCEDURE GetSpecificSchoolClasses

GO

CREATE PROCEDURE GetSpecificSchoolClasses

@SchoolName varchar(50)

AS

select

SCHOOL.SchoolName,

CLASS.ClassName

from

SCHOOL

inner join CLASS on SCHOOL.SchoolId = CLASS.SchoolId

where SchoolName=@SchoolName

order by ClassName

64 Stored Procedures

Pooja Pawar

SET NOCOUNT ON prevents the sending of DONE_IN_PROC messages to the client for each

statement in a stored procedure. For stored procedures that contain several statements that

do not return much actual data, or for procedures that contain Transact-­‐SQL loops, setting

SET NOCOUNT to ON can provide a significant performance boost, because network traffic is

greatly reduced.

Example:

This Stored Procedure updates a table in the database and in this case you don’t normally

need feedback, sp setting SET NOCOUNT ON at the top in the stored procedure is a good

idea. it is also good practice to SET NOCOUNT OFF at the bottom of the stored procedure.

IF EXISTS (SELECT name

FROM sysobjects

WHERE name = 'sp_LIMS_IMPORT_REAGENT'

AND type = 'P')

DROP PROCEDURE sp_LIMS_IMPORT_REAGENT

GO

CREATE PROCEDURE sp_LIMS_IMPORT_REAGENT

@Name varchar(100),

@LotNumber varchar(100),

@ProductNumber varchar(100),

@Manufacturer varchar(100)

AS

SET NOCOUNT ON

if not exists (SELECT ReagentId FROM LIMS_REAGENTS WHERE [Name]=@Name)

INSERT INTO LIMS_REAGENTS ([Name], ProductNumber, Manufacturer)

VALUES (@Name, @ProductNumber, @Manufacturer)

else

UPDATE LIMS_REAGENTS SET

[Name] = @Name,

ProductNumber = @ProductNumber,

Manufacturer = @Manufacturer,

WHERE [Name] = @Name

SET NOCOUNT OFF

GO

65

11 Functions

With SQL and SQL Server you can use lots of built-­‐in functions or you may create your own

functions. Here we will learn to use some of the most used built-­‐in functions and in addition

we will create our own function.

11.1 Built-­‐in Functions

SQL has many built-­‐in functions for performing calculations on data.

We have 2 categories of functions, namely aggregate functions and scalar functions.

Aggregate functions return a single value, calculated from values in a column, while scalar

functions return a single value, based on the input value.

Aggregate functions -‐‐ examples:

 AVG() -‐‐ Returns the average value

 STDEV() -‐‐ Returns the standard deviation value

 COUNT() -‐‐ Returns the number of rows

 MAX() -‐‐ Returns the largest value

 MIN() -‐‐ Returns the smallest value

 SUM() -‐‐ Returns the sum

 etc.

Scalar functions -‐‐ examples:

 UPPER() -‐‐ Converts a field to upper case

 LOWER() -‐‐ Converts a field to lower case

 LEN() -‐‐ Returns the length of a text field

 ROUND() -‐‐ Rounds a numeric field to the number of decimals specified

 GETDATE() -‐‐ Returns the current system date and time

 etc.

11.1.1 String Functions

Here are some useful functions used to manipulate with strings in SQL Server:

66 Functions

Pooja Pawar

 CHAR

 CHARINDEX

 REPLACE

 SUBSTRING

 LEN

 REVERSE

 LEFT

 RIGHT

 LOWER

 UPPER

 LTRIM

 RTRIM

Read more about these functions in the SQL Server Help.

11.1.2 Date and Time Functions

Here are some useful Date and Time functions in SQL Server:

 DATEPART

 GETDATE

 DATEADD

 DATEDIFF

 DAY

 MONTH

 YEAR

 ISDATE

Read more about these functions in the SQL Server Help.

11.1.3 Mathematics and Statistics Functions

Here are some useful functions for mathematics and statistics in SQL Server:

 COUNT

 MIN, MAX

 COS, SIN, TAN

 SQRT

 STDEV

 MEAN

 AVG

67 Functions

Pooja Pawar

Read more about these functions in the SQL Server Help.

11.1.4 AVG()

The AVG() function returns the average value of a numeric column.

Syntax:

Example:

Given a GRADE table:

We want to find the average grade for a specific student:

11.1.5 COUNT()

The COUNT() function returns the number of rows that matches a specified criteria.

The COUNT(column_name) function returns the number of values (NULL values will not be

counted) of the specified column:

The COUNT(*) function returns the number of records in a table:

SELECT AVG(column_name) FROM table_name

select AVG(Grade) as AvgGrade from GRADE where StudentId=1

SELECT COUNT(column_name) FROM table_name

SELECT COUNT(*) FROM table_name

68 Functions

Pooja Pawar

We use the CUSTOMER table as an example:

11.1.6 The GROUP BY Statement

Aggregate functions often need an added GROUP BY statement.

The GROUP BY statement is used in conjunction with the aggregate functions to group the

result-­‐set by one or more columns.

Syntax

Example:

We use the CUSTOMER table as an example:

If we try the following:

We get the following error message:

Column 'CUSTOMER.FirstName' is invalid in the select list because it is not contained in either

an aggregate function or the GROUP BY clause.

The solution is to use the GROUP BY:

select COUNT(*) as NumbersofCustomers from CUSTOMER

SELECT column_name, aggregate_function(column_name)

FROM table_name

WHERE column_name operator value

GROUP BY column_name

select FirstName, MAX(AreaCode) from CUSTOMER

select FirstName, MAX(AreaCode) from CUSTOMER

group by FirstName

69 Functions

Pooja Pawar

11.1.7 The HAVING Clause

The HAVING clause was added to SQL because the WHERE keyword could not be used with

aggregate functions.

Syntax:

We use the GRADE table as an example:

First we use the GROUP BY statement:

While the following query:

SELECT column_name, aggregate_function(column_name)

FROM table_name

WHERE column_name operator value

GROUP BY column_name

HAVING aggregate_function(column_name) operator value

select * from GRADE

select CourseId, AVG(Grade) from GRADE

group by CourseId

select CourseId, AVG(Grade) from GRADE

group by CourseId

having AVG(Grade)>3

70 Functions

Pooja Pawar

11.2 User-­‐defined Functions

IN SQL we may also create our own functions, so-­‐called user-­‐defined functions.

A user-­‐defined function is a routine that accepts parameters, performs an action, such as a

complex calculation, and returns the result of that action as a value. The return value can

either be a scalar (single) value or a table. Use this statement to create a reusable routine

that can be used in other queries.

In SQL databases, a user-­‐defined function provides a mechanism for extending the

functionality of the database server by adding a function that can be evaluated in SQL

statements. The SQL standard distinguishes between scalar and table functions. A scalar

function returns only a single value (or NULL), whereas a table function returns a (relational)

table comprising zero or more rows, each row with one or more columns.

Stored Procedures vs. Functions:

 Only functions can return a value (using the RETURN keyword).

 Stored procedures can use RETURN keyword but without any value being passed[1]

 Functions could be used in SELECT statements, provided they don’t do any data

manipulation and also should not have any OUT or IN OUT parameters.

 Functions must return a value, but for stored procedures this is not compulsory.

 A function can have only IN parameters, while stored procedures may have OUT or IN

OUT parameters.

 A function is a subprogram written to perform certain computations and return a

single value.

 A stored procedure is a subprogram written to perform a set of actions, and can

return multiple values using the OUT parameter or return no value at all.

User-­‐defined functions in SQL are declared using the CREATE FUNCTION statement.

When we have created the function, we can use the function the same way we use built-­‐in

functions.

71

12 Triggers

A database trigger is code that is automatically executed in response to certain events on a

particular table in a database.

Syntax for creating a Trigger:

The Trigger will automatically be executed when data is inserted, updated or deleted in the

table as specified in the Trigger header.

INSERTED and DELETED:

Inside triggers we can use two special tables: the DELETED table and the INSERTED tables.

SQL Server automatically creates and manages these tables. You can use these temporary,

CREATE TRIGGER <TriggerName> on <TableName>

FOR INSERT, UPDATE, DELETE

AS

… Create your Code here

GO

72 Triggers

Pooja Pawar

memory-­‐resident tables to test the effects of certain data modifications. You cannot modify

the data in these tables.

The DELETED table stores copies of the affected rows during DELETE and UPDATE

statements. During the execution of a DELETE or UPDATE statement, rows are deleted from

the trigger table and transferred to the DELETED table.

The INSERTED table stores copies of the affected rows during INSERT and UPDATE

statements. During an insert or update transaction, new rows are added to both the

INSERTED table and the trigger table. The rows in the INSERTED table are copies of the new

rows in the trigger table.

Example:

We will use the CUSTOMER table as an example:

We will create a TRIGGER that will check if the Phone number is valid when we insert or

update data in the CUSTOMER table. The validation check will be very simple, i.e., we will

check if the Phone number is less than 8 digits (which is normal length in Norway). If the

Phone number is less than 8 digits, the following message “Phone Number is not valid” be

written in place of the wrong number in the Phone column.

The TRIGGER becomes something like this:

IF EXISTS (SELECT name

FROM sysobjects

WHERE name = 'CheckPhoneNumber'

AND type = 'TR')

DROP TRIGGER CheckPhoneNumber

GO

CREATE TRIGGER CheckPhoneNumber ON CUSTOMER

FOR UPDATE, INSERT

AS

DECLARE

@CustomerId int,

@Phone varchar(50),

@Message varchar(50)

set nocount on

select @CustomerId = CustomerId from INSERTED

select @Phone = Phone from INSERTED

73 Triggers

Pooja Pawar

We test the TRIGGER with the following INSERT INTO statement:

The results become:

As you can see, the TRIGGER works as expected.

We try to update the Phone number to a valid number:

The results become:

set @Message = 'Phone Number ' + @Phone + ' is not valid'

if len(@Phone) < 8 --Check if Phone Number have less than 8 digits

update CUSTOMER set Phone = @Message where CustomerId = @CustomerId

set nocount off

GO

INSERT INTO CUSTOMER

(CustomerNumber, LastName, FirstName, AreaCode, Address, Phone)

VALUES

('1003', 'Obama', 'Barak', 51, 'Nevada', '4444')

update CUSTOMER set Phone = '44444444' where CustomerNumber = '1003'

74

13 Communicate from

other Applications

A Database is a structured way to store lots of information. The information is stored in

different tables. “Everything” today is stored in databases.

Examples:

 Bank/Account systems

 Information in Web pages such as Facebook, Wikipedia, YouTube

 … lots of other examples

This means we need to be able to communicate with the database from other applications

and programming languages in order to insert, update or retrieve data from the database.

13.1 ODBC

ODBC (Open Database Connectivity) is a standardized interface (API) for accessing the

database from a client. You can use this standard to communicate with databases from

different vendors, such as Oracle, SQL Server, etc. The designers of ODBC aimed to make it

independent of programming languages, database systems, and operating systems.

We will use the ODBC Data Source Administrator:

75 Communicate from other Applications

Pooja Pawar

13.2 Microsoft Excel

Microsoft Excel has the ability to retrieve data from different data sources, including

different database systems. It is very simple to retrieve data from SQL Server into Excel since

Excel and SQL Server has the same vendor (Microsoft).

76 Communicate from other Applications

Pooja Pawar

77

14 References

Microsoft official SQL Server Web site -‐‐ http://www.microsoft.com/sqlserver

SQL Server Books Online -‐‐ http://msdn.microsoft.com/en-­­us/library/ms166020.aspx

SQL Server Help

w3shools.com -‐‐ http://www.w3schools.com/sql

Wikipedia – Microsoft SQL Server -‐‐ http://en.wikipedia.org/wiki/Microsoft_SQL_Server

Wikipedia -‐‐ SQL -‐‐ http://en.wikipedia.org/wiki/SQL

Wikipedia – Transact SQL -‐‐ http://en.wikipedia.org/wiki/T-­­SQL

	Table of Contents
	1 Introduction to SQL
	 Microsoft SQL Server
	 Oracle
	 Introduction to Database Systems
	1.1 Data Definition Language (DDL)
	1.2 Data Manipulation Language (DML)

	2 Introduction to SQL Server
	2.1 SQL Server Management Studio
	2.1.1 Create a new Database
	2.1.2 Queries

	3 CREATE TABLE
	Example:
	Best practice:
	3.1 Database Modelling
	3.2 Create Tables using the Designer Tools
	3.3 SQL Constraints
	3.3.1 PRIMARY KEY
	Setting Primary Keys in the Designer Tools:

	3.3.2 FOREIGN KEY
	Setting Foreign Keys in the Designer Tools:
	3.3.3 NOT NULL / Required Columns
	Setting NULL/NOT NULL in the Designer Tools:

	3.3.4 UNIQUE
	Setting UNIQUE in the Designer Tools:

	3.3.5 CHECK
	Setting CHECK constraints in the Designer Tools:

	3.3.6 DEFAULT
	Setting DEFAULT values in the Designer Tools:
	3.3.7 AUTO INCREMENT or IDENTITY
	Setting identity(1,1) in the Designer Tools:

	3.4 ALTER TABLE

	4 INSERT INTO
	Insert Data Only in Specified Columns:
	Insert Data in the Designer Tools:

	5 UPDATE
	Update Data in the Designer Tools:

	6 DELETE
	Delete All Rows:
	Delete Data in the Designer Tools:

	7 SELECT
	Select Data in the Designer Tools:
	7.1 The ORDER BY Keyword
	7.2 SELECT DISTINCT
	7.3 The WHERE Clause
	7.3.1 Operators
	7.3.2 LIKE Operator
	7.3.3 IN Operator
	7.3.4 BETWEEN Operator

	7.4 Wildcards
	7.5 AND & OR Operators
	Combining AND & OR:

	7.6 SELECT TOP Clause
	7.7 Alias
	7.8 Joins
	7.8.1 Different SQL JOINs

	8 SQL Scripts
	8.1 Using Comments
	8.1.1 Single-­‐line comment
	8.1.2 Multiple-­‐line comment

	8.2 Variables
	8.3 Built-­‐in Global Variables
	8.3.1 @@IDENTITY
	Example:

	8.4 Flow Control
	8.4.1 IF – ELSE
	BEGIN…END:
	BEGIN…END.

	8.4.2 WHILE
	Example:

	8.4.3 CASE
	8.4.4 CURSOR
	Example:

	9 Views
	Example:
	9.1 Using the Graphical Designer

	10 Stored Procedures
	Example:
	Example: (1)
	10.1 NOCOUNT ON/NOCOUNT OFF
	Example:

	11 Functions
	11.1 Built-­‐in Functions
	11.1.1 String Functions
	11.1.2 Date and Time Functions
	11.1.3 Mathematics and Statistics Functions
	11.1.4 AVG()
	11.1.5 COUNT()
	11.1.6 The GROUP BY Statement
	11.1.7 The HAVING Clause

	11.2 User-­‐defined Functions

	12 Triggers
	INSERTED and DELETED:
	Example:

	13 Communicate from other Applications
	13.1 ODBC
	13.2 Microsoft Excel

	14 References

