

A
W

Table of Contents

1 INtroducCtion tO SQL.....cooiiiiiiiiiie et a e e e e 5
1.1 Data Definition LangUage (DDL)eeeeeeeiiiiiiiiieee e e e e e sttt e e e e e e s s s e e e e e e e s e snnnnnaeeeeas 7
1.2 Data Manipulation Language (DIMIL)cccuurriereeeeeesiiiiiiiee e e e e e s s snnee e e e e e e e s snnnnnnnneeeeas 7

2 INtrodUCtioN tO SQL SEIVETuiiiiiiiiee ettt e e e e st e e e e e e et b e e e e e e eeaans 8
2.1 SQL Server Management StUIO..........covviiiiiiiiiiiciccee e 9

2.1.1 Create @a New Database...........coooiiiiiiiiiiiiic e 10
00 07 O U= g = 11

3 CREATE TABLE. ..ottt e e e e e e e e e e e e s annne e e e e e 12
3.1 Database MOEIINGuuvuiiieiiiiiiiiiiiieiiiiiiteeeeeeeeeeeeeeeaeeeaeeeaeessssessssssssssssssesssssnsnnnnes 14
3.2 Create Tables using the Designer TOOISuuuuuuuiuuuiriiiiriiiiieirineneer———.- 16
RS T O | IR 0o 1 1 = | 16

3.3.1 PRIMARY KEY....eetiiiiiiiiieeiitiee ettt e e e e e e s e e e s nnnnee s 17
3.3.2 FOREIGN KEYeiiieiiiiiie ettt e e 18
3.3.3 NOT NULL / Required COlUMNS.......ccoiiiiiiiiieee e e e s sttt e e e e e e e s serarree e e e e e e e s nnnnnes 21
3.304 UNIQUE.....ceeieeie ettt e ek e e e s s e e e e e e e e e ennne s 22
3.3.5 CHECK ..ottt et e e s 24
30306 DEFAULT oottt e ek e e e e e e e e s e e s s 26
3.3.7 AUTO INCREMENT OF IDENTITY ...ceiiieiiiiiiee ettt 27
3.4 ALTER TABLE ...tttk e e ettt e e e st e e e e e e e e e e annes 28
A INSERT INTO ..eoiiiiiieiiitte ettt et ettt e e ekttt e e e et e e e e e bbb e e e e nbbe e e e e annneeeeaas
D UPDATE ettt h et e e R b bt e e e R R bt e e e e b be e e e e abne e e e e anees

Pooja Pawar

= 34
< o P 36
7.1 The ORDER BY KE@YWOITuuuuuuuuuuueuuussunsnssnnnsnnnnsnsssnnnsssnssssssssssssssssssssssnsssssssnssnsnnnnnnns 38
7.2 SELECT DISTINCT .iiietee ettt ettt ettt ettt ettt e e ettt e e e e st e e e s anb b e e e e e anbne e e e e nnnes 39
7.3 The WHERE ClaUSEttt e e e e e st n e e e e e e e ans 39
2 TS R O] o= = o] £ PSP PPT R SPPPTT 40
2 T A R | (=N O] o 1] - | (o] GO PP PUPTT 40
7.3.3 IN OPOIAt O .. it 41
7.3.4 BETWEEN OPerator. ...ttt e et aeenanns 41
T4 WIACAIDS ..ot e e 41
T N\ B I T O 2 O T TT =] 42
7.6 SELECT TOP ClaUSEeeeieiiiiieee et ettt et e e e e e e 43
2 A LT PP PP 43
7% 2 T o 1o 44
7.8.1 Different SQLJOINSooiiiiiiiieeeiie e e s 45

Y O LI ' PSPPSR a7
8.1 USING COMMBNTES ..ttt ittt s e e e e e et e e e e e e e e et e e e abaa s a7
8.1.1 Single---line COMMENT.....ccceiieeee e 47
8.1.2 Multiple-—-line COMMENTcoiiiiiiiiiei e e e e e e e aaaea s 47
8.2 VArIAbIes ... 48
8.3 Built---in Global Variablescooiiiiiiiiiii e 49
8.3.1 @ @IDENTITY .iiiiieeietie ettt e e e e e e et e e e e st r e e e e st e e e e annneeas 49
8.4 FIOW CONLIOl ... e e e 50
B4 1 IF = ELSE ..ot
B.4.2 WHILE ...ttt e e e ettt e et e e e r e e s
88,3 CASE .t e s R et e e e R e e e e e e nbn e e e e annee s

Pooja Pawar

B0 CURSOR e 53
D VB S e 55
9.1 Using the Graphical DESIGNENuuuuuuuuiiriiruiririireiieurrrnrrrnrrnrrrnrrrr—————. 56
10 STOred PrOCEAUIES ..ottt e e e e e e e e e e e e e s e e bbb e e e e e eeenans 60
10.1 NOCOUNT ON/NOCOUNT OFF ...utiiiiiiieiiiieeciieeesiieeesnieeeaieaeanteaeasseaeasnanessnseeesnnneeas 63
5 R U1 ot o o L PP 65
12,1 BUilt-=in FUNCHIONS ...ttt e e e e e e s st e e e e e e s e annnenees 65
11,101 SEANG FUNCEIONS ceven ittt e et e et e e e et aeaeee 65
11.1.2 Date and Time FUNCHIONS.......cooiiiiiiiiiiiiee e 66
11.1.3 Mathematics and Statistics FUNCEIONS.............oocciiiiiiiiiie e 66
LI.004 AVG() eeeeeeiieiie ettt e e 67
11,05 COUNT() e eeinneeeeeeiireie e ettt e e e e e e e e e e e e e e e e e e e 67
11.1.6 The GROUP BY STatementccoiiiiiiieiiiiiiie e 68
11.1.7 The HAVING ClaUSEueeeieiiiieiie et nee e e e 69
11.2 User---defined FUNCLIONScoiuiiiiiiiiiiie et e e 70
0 I 4 = = (=T PP PP SPPPIRS 71
13 Communicate from other APPliCAtioNSuuuuuiiiiiiiiiiiiiiiiiiiii .. 74
1 701 R - PP 74
13.2 IMICIOSOFt EXCEI ...ttt e e e 75
S 0T (T =T o (ol TP PP PPRPP PP 77

Pooja Pawar

1Introduction to SQL

SQL (Structured Query Language) is a database computer language designed for managing
data in relational database management systems (RDBMS).

SQL, is a standardized computer language that was originally developed by IBM for querying,
altering and defining relational databases, using declarative statements.

SQL is pronounced / es kju: 'el/ (letter by letter) or /'si:zkwaal/ (as a word).

SQL - Structured Query language

A Database Computer Language designed for Managing Data in
Relational Database Management Systems (RDBMS)

Query Examples:

* insert into STUDENT (Name , Number, SchoolId)
values ('John Smith', '100005', 1)

* select SchoolId, Name from SCHOOL
* select * from SCHOOL where SchoolId > 100
e update STUDENT set Name='John Wayne' where StudentId=2

* delete from STUDENT where SchoolId=3

We have 4 different Query Types: INSERT, SELECT, UPDATE and DELETE

What can SQL do?

e SQL can execute queries against a database
e SQL can retrieve data from a database

e SQL caninsert records in a database

e SQL can update records in a database

e SQL can delete records from a database

6 Introduction to SQL

e SQL can create new databases

e SQL can create new tables in a database

e SQL can create stored procedures in a database

e SQL can create views in a database

e SQL can set permissions on tables, procedures, and views

Even if SQL is a standard, many of the database systems that exist today implement their
own version of the SQL language. In this document we will use the Microsoft SQL Server as
an example.

There are lots of different database systems, or DBMS — Database Management Systemes,
such as:

e Microsoft SQL Server
o Enterprise, Developer versions, etc.
o Express version is free of charge
e Oracle
e MySQL (Oracle, previously Sun Microsystems) --- MySQL can be used free of charge
(open source license), Web sites that use MySQL: YouTube, Wikipedia, Facebook
e Microsoft Access

e |BM DB2
e Sybase
e .. lots of other systems

In this Tutorial we will focus on Microsoft SQL Server. SQL Server uses T---SQL (Transact---SQL).
T---SQL is Microsoft's proprietary extension to SQL. T---SQL is very similar to standard SQL, but
in addition it supports some extra functionality, built---in functions, etc.

Pooja Pawar

7 Introduction to SQL

Other useful Tutorials about databases:

e Introduction to Database Systems

e Database Communication in LabVIEW

1.1 Data Definition Language (DDL)

The Data Definition Language (DDL) manages table and index structure. The most basic
items of DDL are the CREATE, ALTER, RENAME and DROP statements:

e CREATE creates an object (a table, for example) in the database.
e DROP deletes an object in the database, usually irretrievably.

e ALTER modifies the structure an existing object in various ways—for example, adding
a column to an existing table.

1.2 Data Manipulation Language (DML)

The Data Manipulation Language (DML) is the subset of SQL used to add, update and delete
data.

The acronym CRUD refers to all of the major functions that need to be implemented in a
relational database application to consider it complete. Each letter in the acronym can be
mapped to a standard SQL statement:

Operation sqL Description
Create INSERT INTO inserts new data into a database
Read (Retrieve) SELECT extracts data from a database
Update UPDATE updates data in a database
Delete (Destroy) DELETE deletes data from a database

Pooja Pawar

2 Introduction to SQL Server

Microsoft is the vendor of SQL Server. The newest version is “SQL Server 2012”.

We have different editions of SQL Server, where SQL Server Express is free to download and
use.

SQL Server uses T---SQL (Transact---SQL). T---SQL is Microsoft's proprietary extension to SQL.
T---SQL is very similar to standard SQL, but in addition it supports some extra functionality,
built--in functions, etc. T---SQL expands on the SQL standard to include procedural
programming, local variables, various support functions for string processing, date
processing, mathematics, etc.

SQL Server consists of a Database Engine and a Management Studio (and lots of other stuff
which we will not mention here). The Database engine has no graphical interface it is just a
service running in the background of your computer (preferable on the server). The
Management Studio is graphical tool for configuring and viewing the information in the
database. It can be installed on the server or on the client (or both).

Database Engine Management Studio "\

K. Microsoft SQL Server Management Studio

Fle Edt View Tools Window Community Help
o NewQuery [y |3 | (5 A =g
Object Explorer Details v x
Connect ~ 37 33 3 @ O @A T [E B seach ”
= B PCBEZSS\DEVELOPMEN' (SQL Server 10.0.0A | | pcag23SIDEVELOPMENT (SQL Server 10.0.2531 - sa)\Databases\ TEST
= [Databases
3 [System Databases Name Policy Health State
| § ScapA (L Database Diagrams
SR fesT | [Tables
[Database Diagrams [views
= (3 Tables [Synonyms
[System Tables (23 Programmability
- . ® J dbo.CLASS 5 Fon
A Service running on the 5 71 doo.5cHOOL o
. # [Views
computer in the background & 3 Symonyms
[Programmability < >
[Service Broker = —
® [Security v|| W TEST
< >
Ready

A Graphical User Interface to the database used for
configuration and management of the database

Introduction to SQL Server

2.1 SQL Server Management Studio

SQL Server Management Studio is a GUI tool included with SQL Server for configuring,
managing, and administering all components within Microsoft SQL Server. The tool includes
both script editors and graphical tools that work with objects and features of the server. As
mentioned earlier, version of SQL Server Management Studio is also available for SQL Server
Express Edition, for which it is known as SQL Server Management Studio Express.

A central feature of SQL Server Management Studio is the Object Explorer, which allows the
user to browse, select, and act upon any of the objects within the server. It can be used to
visually observe and analyze query plans and optimize the database performance, among
others. SQL Server Management Studio can also be used to create a new database, alter any
existing database schema by adding or modifying tables and indexes, or analyze

performance. It includes the query windows which provide a GUI based interface to write
and execute queries.

= (42 Microsoft SQL Server Management Studio

=8 Eon ==
,"3\ File Edit View Query Debug Tools Window Community Help
- DIkSEE E,
%3 | scHooL - P Eecte p ® v 33 @[] I QREEDIE 2 %
L Ob; rer 5 SQLQueryl.sql - P...SCHOOL (sa (52))* / \ ~ X || Properties v a3 x
“YoltSQL Server g (4)

from SC:"!DCL{ N Current connection parameters v

5|44
B Aggregate Status

nf
on

(
\ -
1@ O PC88235\DEVELOPMENT (BQL Serve ~
= [Databases

+ [System Databases
| J LIBRARYSYSTEM

ayscoX¥our Database

\ 2 1§ scHooL
- 2 Database Diagrams

=) [l Tables

(3 System Tables S

[dbo.CLASS State

Write your Query here

3 dbo.COURSE
2 dbo.GRADE

Your
% = dbo.SCHOOL

Tables = dsostupent
% 1 dbo.STUDENT_COURS

: v

5] Resutts | [y Messages

[0

B Connection
Connection n PC88235\DEVELOF
B Connection Details

[dbo.TEACHER Schoolld SchoolName Description Address Phone PostCode PostAddress
% [dbo.TEACHER_COUR 1 [0 e The best school Telemak NULL NULL NULL
[Views 2 27 e OK School USA NULL NULL NULL
(3 Synonyms il 3 NTNU The second best school ~ Trondheim NULL ~ NULL NULL
® (3 Programmability 4 4 Universty of Oslo Thethird best school ~ Oslo NULL NULL NULL
[Service Broker
+# [Storage —
@ (3 Secur (4)
iR (4) The result from your Query s
[J WEATHERDATA SPID
% [Security Name
¥ 3 zervler ijens i The name of the connection.
P P— ’ (@ Query executed successfully. PC88235\DEVELOPMENT (1050 ... | sa (52) | SCHOOL | 00:00:00 | 4 rows
Ready Ln1 Col21 ch2l INS

When creating SQL commands and queries, the “Query Editor” (select “New Query” from
the Toolbar) is used (shown in the figure above).

With SQL and the “Query Editor” we can do almost everything with code, but sometimes it is
also a good idea to use the different Designer tools in SQL to help us do the work without

coding (so much).

Pooja Pawar

10 Introduction to SQL Server

2.1.1 Create a new Database

Itis quite simple to create a new database in Microsoft SQL Server. Just right---click on the
“Databases” node and select “New Database...”

“ Microsoft SQL Server Management 5tudio

File Edit View Debug Toaols Window Community Help
_;_Neruery E'I:j DE! [jﬂ | ﬂi

=+ 151 ! 4

5QLD

Cas Mew Database. ..
= TE - -
£ attach, ..
= Restore Database,..
= Restore Files and Filegroups. ..
O
= Start PowerShell
O
G Reports »
[Secur
3 Serve Refresh
[Replication
[Management

There are lots of settings you may set regarding your database, but the only information you
must fill in is the name of your database:

F New Database E
Select apage Ie
Scrpt ~ Hel
2 General & scivt - EHep
Qx Options
A Filegroups Database name: ‘ ‘
Duner |<defauit |
Database files:
Logical Mame | File Type Filegroup Iritial Size [MB] Autogrowth
Rows Data PRIMARY 3 : By 1 MB, unrestricted growth
_lag Lag Mot Applicable 1 By 10 percent, unrestricted gr
Server
PCAa235
Connection:
sa
43 View connection pioperties
Ready b3 >
Add Femove

Pooja Pawar

11 Introduction to SQL Server

You may also use the SQL language to create a new database, but sometimes it is easier to
just use the built--in features in the Management Studio.

2.1.2 Queries

In order to make a new SQL query, select the “New Query” button from the Toolbar.

R Microsoft 50L Server, Management Studio

Fil B w Debug Tools ‘Window Community Help
1 Mewi Query =1 N
g . - o] oa wa [| = © | 2= 5= | AY
O [rew Query\CING ! Execute b v &Y 91 3" iy QQQ] =
Object Explorer * 3 x SQLQueryl.sql ..ING (sa (53))* | Object Explorer Detalls - X
Comnect~ @3 &3 = T G select * from CUSTOMER =
=l [{§ PCEBZ3S\DEVELOPMENT (S0l Server 10.0,2531 - 5a)
= [Databases 2 ’
[System Databases
| IwOICING
H zg:g& You write your
+ o
[TesT SQL Code here
| Security
3 Server Objects
3 Replication
|4 Management
v
4 2
[Results ||_1§ Messages
Customerld CustomerMumber | LastMame | FirstName | AreaCode | Address Phone
1 1 11000 Srith John 12 California 11111111 @ Your results will
2 2 1001 Jack Smith a5 Lond 22222222
ackson i ondon appear in this
3 3 1002 Johnsen John 2 London 33333333 i .
window
< | 5 || @ query executed successfully. PCEEZ35\DEVELORMENT (10.05P1) sa(53) IWOICING 00:00:00 3 rows
Ready Ln 1 Col 23 Chz3 NS

Here we can write any kind of queries that is supported by the SQL language.

Pooja Pawar

3CREATE TABLE

Before you start implementing your tables in the database, you should always spend some
time design your tables properly using a design tool like, e.g., ERwin, Toad Data Modeler,
PowerDesigner, Visio, etc. This is called Database Modeling.

Database Design — ER Diagram

ER Diagram (Entity-Relationship Diagram)

* Used for Design and Modeling of Databases.

» Specify Tables and relationship between them (Primary Keys and
Foreign Keys) Table Name

Example: /

Table Name =—> BOOK CHAPTER

PK | Bookid PK Chapterid

4_;

BookTitle
Summary

K1 | Bookid Coiimin
ChapterNumb Names
ChapterTitle

L%

/ Primary Key

F
Primary Key /
Foreign Key

Relational Database. In a relational database all the tables have one or more relation with each other using Primary Keys
(PK) and Foreign Keys (FK). Note! You can only have one PK in a table, but you may have several FK’s.

The CREATE TABLE statement is used to create a table in a database.

Syntax:

CREATE TABLE table name
(

column namel data type,
column name2 data type,
column name3 data type,

)

The data type specifies what type of data the column can hold.

12

13 CREATE TABLE

You have special data types for numbers, text dates, etc.
Examples:

e Numbers: int, float

e Text/Stings: varchar(X) —where X is the length of the string
e Dates: datetime

e etc.

Example:

We want to create a table called “CUSTOMER” which has the following columns and data
types:

Zolumn Mame Data Type Alloosy rulls

(37 CustomerId int]
CustomerNurnber int]
LastMarne warchar{50)]
FirstMarne warchar{50)]
AreaCode int
Address warchar{50)
Phone warchar{20)

[

CREATE TABLE CUSTOMER
(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar(50) NULL,

Best practice:

When creating tables you should consider following these guidelines:

e Tables: Use upper case and singular form in table names — not plural, e.g.,
“STUDENT” (not students)
e Columns: Use Pascal notation, e.g., “Studentld”
e Primary Key:
o If the table name is “COURSE”, name the Primary Key column “Courseld”, etc.

Pooja Pawar

14 CREATE TABLE

o “Always” use Integer and ldentity(1,1) for Primary Keys. Use UNIQUE
constraint for other columns that needs to be unique, e.g. RoomNumber
Specify Required Columns (NOT NULL) —i.e., which columns that need to have data
or not

Standardize on few/these Data Types: int, float, varchar(x), datetime, bit
Use English for table and column names

Avoid abbreviations! (Use RoomNumber — not RoomNo, RoomNr, ...)

3.1 Database Modelling

As mention in the beginning of the chapter, you should always start with database modelling
before you start implementing the tables in a database sytem.

Below we see a database model in created with ERwin.

STUDENT
Studentld .
Classld (FK)
StudentMame
StudentNumber
TotalGrade STUDENT _COURSE
Address Studentld (FK)
i | Courseld (FK)
Eail
SCHOOL
GRADE COURSE Schoolld CLASS
Ciadeld Courseld SchoolMame Classld
Studentld (FK) &] Description F Schoolld (FK)
Courseld (FK) Address
Schoolld (FK) ClassMame
Grade Cescription Fhone Description
Cornrrient E) PostCode P
Postaddress
TEACHER_COURSE TENGHER
Teacherld [FK) eeen=e
Courseld (FK) b Schoolld (FK)
TeacherMame
Description

With this tool we can transfer the database model as tables into different database systems,
such as e.g., SQL Server. CA ERwin Data Modeler Community Edition is free with a 25 objects
limit. It has support for Oracle, SQL Server, MySQL, ODBC and Sybase.

Pooja Pawar

15 CREATE TABLE

Below we see the same tables inside the design tool in SQL Server.

SCHOOL
Column Name Datz Type Allow Nulls CLASS
¥ Schoolld int Cohumn Name Data Type Allow Nuls
SchoolName varchar(s0) 9 Clseid t =
Description varchar(1000) Schoalld int (]
Address varchar(50) ClassName varchar(50)]
Phans warchan(50) Desaription warchar(1000)
PostCode warchar(s0) =
PostAddress warchar(50)
[}
STUDENT
COURSE Column Name Datz Type Allow Nulls
Colsmn Name Data Type Allow Nulls STUDENT_COURSE % Studentld int =]
9 Courseld it] ‘Column Name Data Type Allow Nulls Classld it]
CourseName varchar{50} B Studentid int B StudentName warchar{100) [}
Schoolld int B Courseld int [} StudentNumbar wvarchar(20) 1]
Desoription warchar(1000) [} TotalGrade float
] [Fo—=59 Address warcha(100)
Phare warchar(20)
EMsil varchar{100)
]}
GRADE
IEACERY TEACHER_COURSE Cohumn Name Data Type Allow Nulis
Column Name Data Type Allow Nulls = B
@ Tescherld n B Column Name Data Type Allow Nuls § Gradeld }m 1]
B Teacheld int B Studentld int [}
Schoolid int [} — - o - - o
1::‘,”3“ varchar(50) [} =00 & e font =
Fen varshar(1oo) Comment warchar(1000)
H]}

File Edit View Query Project Debug Tools | Window Help

ilr v 5 |) NewQuery || (D) Code Snippets Manager... Ct+K CtrieB |B DO you get an error
3 | WEATHER - | ! Choose Toolbox Items... i al = when trying tO

External Tools...

Object Explorer v Q
Comect~ % % & 7 2.3 Import and Export Setings.. change your tables?
=] LB WIN-0VDBU4QRDPI\DEVELOPMENT (! i

= [Databases
@ 23 System Databases

Ophons...)

!] ™
& | WEATHE Options I \ 3; 2737
3 Datal L
@ 3 Tabld | [Ervironment Table Options
= 3 View{ G |
® (@ Syno enem || Override connection string time-out value for table designer
= AutoRecover updates:
& 3 Prog
Documents S
Find and Replace Transaction time-out after:
Fonts and Colors 30 seconds
Import and Export Settings .
International Setbings [] Auto generate change scripts Make sure to uncheck
Keyboard ["]Warn on null primary keys this opﬁon |
Startup [V| Warn about difference detection
Web Browser
) [V| Warn about tables affected
» Source Control
b Text Editor (LI Prevent saving changes that require table re-creatioD
T Query ;xecu‘tlon Diagram Options
> Query Results Default table view: [Column Names -
p Designers
b SQL Server AlwaysOn [V¥] Launch add table dialog on new diagram
SQL Server Object Explorer
[ok][cancel
. - - J

Pooja Pawar

16 CREATE TABLE

3.2 Create Tables using the Designer Tools

Even if you can do “everything” using the SQL language, it is sometimes easier to do it in the
designer tools in the Management Studio in SQL Server.

Instead of creating a script you may as well easily use the designer for creating tables.

Stepl: Select “New Table ...”:

(=] [Databases
[System Databases
= | TEST
[Database Diagrams

=2 Ca W
o Mews Table. ..

E
B
E

B
= 3 v Reparts »

Filker

Start PowerShell

L
Cas Refresh

3 Programmability
[Service Broker
[Security

[Securiky

[Server Objects

1 Replication

[Management

Step2: Next, the table designer pops up where you can add columns, data types, etc.

Colurnn Mame Data Tvpe Al Mulls

M CustamerId int]
Customerhumber int]
LastMame warchar{50)]
Firsthame warchar{50)]
AreaCode int
Address warchar{50)
Phone warchar{20)

[l

In this designer we may also specify Column Names, Data Types, etc.

Step 3: Save the table by clicking the Save button.

3.3 SQL Constraints

Constraints are used to limit the type of data that can go into a table.

Pooja Pawar

17 CREATE TABLE

Constraints can be specified when a table is created (with the CREATE TABLE statement) or
after the table is created (with the ALTER TABLE statement).

Here are the most important constraints:

e PRIMARY KEY

e NOT NULL

e UNIQUE

e FOREIGN KEY
e CHECK

e DEFAULT

e |DENTITY

In the sections below we will explain some of these in detail.

3.3.1 PRIMARY KEY

The PRIMARY KEY constraint uniquely identifies each record in a database table.

Primary keys must contain unique values. It is normal to just use running numbers, like 1, 2,
3,4, 5, ... as values in Primary Key column. It is a good idea to let the system handle this for
you by specifying that the Primary Key should be set to identity(1,1). IDENTITY(1,1) means
the first value will be 1 and then it will increment by 1.

Each table should have a primary key, and each table can have only ONE primary key.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]
(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone wvarchar (50) NULL,

)
GO

As you see we use the “Primary Key” keyword to specify that a column should be the
Primary Key.

Cuztomerld™, CustomerMumber | LagtMame | Firstbame | AreaCode | Address Phone

L Primary Keys must contain unique f111171

numbers like this Pe2222s
e 333333

Pooja Pawar

18 CREATE TABLE

Setting Primary Keys in the Designer Tools:

If you use the Designer tools in SQL Server you can easily set the primary Key in a table just
by right---click and select “Set primary Key”.

PCEE235N\DEVELOP...EST - dbo. SCHOOL* > EelZad=yald i gvi= w1l
Column Mame Data Type Allow Mulls
'» | Schoolld int]
....... ? SetPrimary Key =
‘ﬁu Insert Column
-'1"' Delete Column
3 Relationships...
=] Indexes/Keys...
a2 Fulltext Index...
= XML Indexes... I
Check Constraints...
;ﬁ Spatial Indexes...
5§ Generate Change Script...
‘= Properties Alt+Enter

The primary Key column will then have a small key % in front to illustrate that this column is
a Primary Key.

3.3.2 FOREIGN KEY

A FOREIGN KEY in one table points to a PRIMARY KEY in another table.

Example:
CLASS
SCHOOL Caolumn Mame Data Tvpe Al Bulls
Calumn Mame Daka Twpe Al ulls ¥ ClassId it O
% Schoolld ink O e Schoolld ik O
Schooliame warchar(50) [l ClassHame warchar(50) (|
Diescription varchar(1000) Description warchar(1000}
Address wvarchar{50) O
Phone warchar(50)
PostCode wvarchar{50)
Postiddress warchar(50)
O

We will create a CREATE TABLE script for these tables:

Pooja Pawar

19 CREATE TABLE

SCHOOL:

CREATE TABLE SCHOOL
(
SchoolId int IDENTITY (1,1) PRIMARY KEY,
SchoolName varchar (50) NOT NULL UNIQUE,
Description varchar (1000) NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,
PostCode wvarchar (50) NULL,
PostAddress varchar (50) NULL,

)
GO

CLASS:

CREATE TABLE CLASS
(
ClassId int IDENTITY (1,1) PRIMARY KEY,
SchoolId int NOT NULL FOREIGN KEY REFERENCES SCHOOL (SchoolId),
ClassName varchar (50) NOT NULL UNIQUE,
Description varchar (1000) NULL,

)
GO

The FOREIGN KEY constraint is used to prevent actions that would destroy links between
tables.

The FOREIGN KEY constraint also prevents that invalid data from being inserted into the
foreign key column, because it has to be one of the values contained in the table it points to.

Setting Foreign Keys in the Designer Tools:

If you want to use the designer, right---click on the column that you want to be the Foreign
Key and select “Relationships...”:

Pooja Pawar

20

CREATE TABLE

PCE8235MDEVELOPM. .. TEST - dbo.CLASS X

% Classld

Object Explorer Details

Column Mame Allow Mulls

Data Type
int

int

7

(NRE)

2l o | 4

El @ 4

il &

Set Primary Key
Insert Colurmn

Delete Column

O=O0O0

Relationships...
Indexes/Keys...
Fulltext Index...
AML Indexes...
Check Constraints...
Spatial Indexes...

Generate Change Script...

Properties Alt+Enter

The following window pops up (Foreign Key Relationships):

Foreign Key Relationships

Selected Relationship:

FK_CLASS_CLASS*

Editing properties for new relationship. The 'Tables And Columns

accepted.

Specification' property needs to be filled in before the new relationship will be

4 (General)
Check Existing Data On Creati Yes
.
Foreign Key Base Table ~ CLASS
Classld
Primary/Unique Key Base CLASS

Foreign Key Columns

Primary/Unique Key Colu Classld
4 Identity
(Name)
Description
4 Table Designer

FK_CLASS_CLASS

1)}
[N
|

Delete]

Click on the “Add” button and then click on the small “...” button. Then the following window
pops up (Tables and Columns):

Pooja Pawar

21 CREATE TABLE

P "

Tables and Columns @

Relationship name:

FK_CLASS_SCHOOL

Prirnary key table: @ Foreign key table: @—)

| scHooL -] cLass
Select Primary Select Foreign
Key Column Key Column

| ok || Ccancel

Here you specify the primary Key Column in the Primary Key table and the Foreign Key
Column in the Foreign Key table.

3.3.3 NOT NULL / Required Columns

The NOT NULL constraint enforces a column to NOT accept NULL values.

The NOT NULL constraint enforces a field to always contain a value. This means that you
cannot insert a new record, or update a record without adding a value to this field.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]
(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone wvarchar (50) NULL,

Pooja Pawar

22 CREATE TABLE

We see that “CustomerNumber”, “LastName” and “FirstName” is set to “NOT NULL", this
means these columns needs to contain data. While “AreaCode”, “Address” and “Phone” may
be left empty, i.e, they don’t need to filled out.

Note! A primary key column cannot contain NULL values.

Setting NULL/NOT NULL in the Designer Tools:

In the Table Designer you can easily set which columns that should allow NULL or not:

- PC88235\DEVELOP...EST - dbo.5CHOOL X

Column Name Data Type Allow Mulls
¥7 | Schoolld - int =
| SchoolMame | varchar(50)]
Description varchar{1000)
Address varchar{50)
Phone varchar{50)
PostCode varchar(50)

PostAddress varchar{50) \ /

3.3.4 UNIQUE

The UNIQUE constraint uniquely identifies each record in a database table. The UNIQUE and
PRIMARY KEY constraints both provide a guarantee for uniqueness for a column or set of
columns.

A PRIMARY KEY constraint automatically has a UNIQUE constraint defined on it.

Note! You can have many UNIQUE constraints per table, but only one PRIMARY KEY
constraint per table.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]

(
CustomerId int IDENTITY(1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,

Pooja Pawar

23 CREATE TABLE

Address varchar (50) NULL,
Phone varchar (50) NULL,

)
GO

We see that the “CustomerNumber” is set to UNIQUE, meaning each customer must have a
unigue Customer Number. Example:

LaztHame | Firstdame @ AreaCode | Addresz | Phone

1 Smith John 12 Calfornia 1111717111
2 Jackzan Srrith 45 London 2R
3 Joknzen John 32 London 33333333

Setting UNIQUE in the Designer Tools:

If you want to use the designer, right---click on the column that you want to be UNIQUE and
select “Indexes/Keys...”:

PCE8235\DEVELOP...EST - dbo.SCHOOL > EeljEads il g1l

Colurmn Name Data Type Allow Mulls
® Schoolld int [l
b e =
- ? Set Pnmary Key
Description U
B Insert Column
Address
'11"' Delete Column
Phone
::3 Relaticnships...
PostCode
2] Indexes/Keys...
PostAddress
% Fulltext Index...
=1 ¥ML Indexes...

Check Censtraints...

E O

Spatial Indexes...

Generate Change Script...

Properties Alt+Enter

Then click “Add” and then set the “Is Unique” property to “Yes”:

Pooja Pawar

24 CREATE TABLE

7=

Indexes/Keys

Selected Primary/Unique Key or Index:

I¥_SCHOOL* Editing properties for new unique key or index,

PK_SCHOOL
2)

4 (General)

Columns Schoolld (ASC)

Is Unique Yes El

Type _
4 Identity No

(MName) TR _SUFIJUL

Description
4 Table Designer

Create As Clustered No

» Data Space Specification PRIMARY

0] > Fill Specification 5
e] o

3.3.5 CHECK

The CHECK constraint is used to limit the value range that can be placed in a column.

If you define a CHECK constraint on a single column it allows only certain values for this
column.

If you define a CHECK constraint on a table it can limit the values in certain columns based
on values in other columns in the row.

Example:

CREATE TABLE [CUSTOMER]
(
CustomerId int IDENTITY(1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE CHECK (CustomerNumber>0),
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone wvarchar (50) NULL,
)
GO

In this case, when we try to insert a Customer Number less than zero we will get an error
message.

Setting CHECK constraints in the Designer Tools:

If you want to use the designer, right---click on the column where you want to set the
constraints and select “Check Constraints...”:

Pooja Pawar

25

CREATE TABLE

PCES23S\DEVELOP...- dbo.CUSTOMER X

Column Mame

% Customerld

CustomerMame

Object Explorer Details

MW ustomerfumber
Address
Phone
PostCode
PostAddress
EMail

Data Type Allow Mulls
int [
varchar(50) [
et S [

Set Primary Key
dﬁu Insert Column
11'" Delete Column
:::3 Relaticnships...
=] Indexes/Keys...

=

2 Fulltext Index...
AML Indexes...
Check Constraints...

=
.E."

E @

Spatial Indexes...

Generate Change Script...

HEN.

Properties Alt+Enter

Then click “Add” and then click “...” in order to open the Expression window:

Check Constraints

Selected Check Constraint:

CK_CUSTOMER™

1)

=

Editing properties for new check constraint. The 'Expression’ property needs
to befilled in before the new check constraint will be accepted.

4 (General)
4 Identity
(Mame)
Description
4 Table Designer
Check Existing Data On Creati Yes
Enforce For INSERTs And UPL Yes
Yes

9

CK_CUSTOMER

Enforce For Replication

[Add

Delete

Close

In the Expression window you can type in the expression you want to use:

Pooja Pawar

26 CREATE TABLE

Check Constraint Expression @
Expression:
CustomerMumber=0 -

| ok || cancel

3.3.6 DEFAULT

The DEFAULT constraint is used to insert a default value into a column.
The default value will be added to all new records, if no other value is specified.

Example:

CREATE TABLE [CUSTOMER]

(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
Country varchar (20) DEFAULT 'Norway',
AreaCode int NULL,
Address varchar (50) NULL,
Phone wvarchar (50) NULL,

)
GO

Setting DEFAULT values in the Designer Tools:

4

Select the column and go into the “Column Properties”:

Column Properties |

AN

4 (General)
(Mame) Country
Allow MNulls Yes
Data Type varchar
DefeuitValueorBinding LA
Length 50

Pooja Pawar

27 CREATE TABLE

3.3.7 AUTO INCREMENT or IDENTITY

Very often we would like the value of the primary key field to be created automatically every
time a new record is inserted.

Example:

CREATE TABLE CUSTOMER
(
CustomerId int IDENTITY(1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,

)
GO

As shown below, we use the IDENTITY() for this. IDENTITY(1,1) means the first value will be 1
and then it will increment by 1.

Setting identity(1,1) in the Designer Tools:

We can use the designer tools to specify that a Primary Key should be an identity column
that is automatically generated by the system when we insert data in to the table.

Click on the column in the designer and go into the Column Properties window:

Column Properties
A

Data Type int

Default Value or Binding
4 Table Designer

Collation <database default>
> Computed Column Specification

Condensed Data Type int
Description
Deterministic Ves
DT5-published Mo
> Full-text Specification No
Has Mon-50L Server Subscriber Mo
a [dentity Specification Yes
(Is Identity) Yes [=]
Identity Increment 1
Identity Seed 1
Indexable Yes
Is Columnset No
Is Sparse No

Pooja Pawar

m

28 CREATE TABLE

3.4 ALTER TABLE

The ALTER TABLE statement is used to add, delete, or modify columns in an existing table.

To add a column in a table, use the following syntax:

ALTER TABLE table name
ADD column name datatype

To delete a column in a table, use the following syntax (notice that some database systems
don't allow deleting a column):

ALTER TABLE table name
DROP COLUMN column name

To change the data type of a column in a table, use the following syntax:

ALTER TABLE table name
ALTER COLUMN column name datatype

If we use CREATE TABLE and the table already exists in the table we will get an error
message, so if we combine CREATE TABLE and ALTER TABLE we can create robust database
scripts that gives no errors, as the example shown below:

if not exists (select * from dbo.sysobjects where id = object id(N'[CUSTOMER]') and
OBJECTPROPERTY (id, N'IsUserTable') = 1)
CREATE TABLE CUSTOMER
(
CustomerId int PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,

GO

if exists(select * from dbo.syscolumns where id = object id(N'[CUSTOMER]') and OBJECTPROPERTY (id,
N'IsUserTable') = 1 and name = 'CustomerId')

ALTER TABLE CUSTOMER ALTER COLUMN CustomerId int

Else

ALTER TABLE CUSTOMER ADD CustomerId int

GO

if exists(select * from dbo.syscolumns where id = object id(N'[CUSTOMER]') and OBJECTPROPERTY (id,
N'IsUserTable') = 1 and name = 'CustomerNumber')
ALTER TABLE CUSTOMER ALTER COLUMN CustomerNumber int

Pooja Pawar

29 CREATE TABLE

Else
ALTER TABLE CUSTOMER ADD CustomerNumber int
GO

Pooja Pawar

4INSERT INTO

The INSERT INTO statement is used to insert a new row in a table.
It is possible to write the INSERT INTO statement in two forms.

The first form doesn't specify the column names where the data will be inserted, only their
values:

INSERT INTO table name
VALUES (valuel, wvalue2, value3,...)

Example:

INSERT INTO CUSTOMER VALUES ('1000', 'Smith', 'John', 12, 'California',
'11111111")

The second form specifies both the column names and the values to be inserted:

INSERT INTO table name (columnl, column2, column3,...)
VALUES (valuel, value2, value3,...)

This form is recommended!

Example:

INSERT INTO CUSTOMER (CustomerNumber, LastName, FirstName, AreaCode,
Address, Phone)
VALUES ('1000', 'Smith', 'John', 12, 'California', '11111111"'")

Insert Data Only in Specified Columns:

It is also possible to only add data in specific columns.

Example:

INSERT INTO CUSTOMER (CustomerNumber, LastName, FirstName)
VALUES ('1000', 'Smith', 'John')

Note! You need at least to include all columns that cannot be NULL.

We remember the table definition for the CUSTOMER table:

30

31 INSERT INTO

Calurmn Mame Data Type Alloos rulls

37 CustomerId int]
CustomerNurnber int]
LastMarne warchar{50)]
FirstMarne warchar{50)]
AreaCode int
Address warchar{50)
Phone warchar{ 20)

[]

i.e., we need to include at least “CustomerNumber”, “LastName” and “FirstName”.
“Customerld” is set to “identity(1,1)” and therefore values for this column are generated by
the system.

Insert Data in the Designher Tools:

When you have created the tables you can easily insert data into them using the designer
tools. Right---click on the specific table and select “Edit Top 200 Rows”:

= [Tables

3 Systern Tables

[FileTables

= dbo AUTHOR

=l dbo.BOOK

=] dbo.BOOK_LIBRARY

= dbo.CATEGORY

=] dbo.CHAPTER

3

=1 dbo.LIBRARY New Table...
= dbo.LOAN Design

3 dbo.PUBLISHER Select Top 1000 Rows

j dbo.RATING Edit Top 200 Rows
3 Views .
[Synonyms Script Table as "

3 Programmability View Dependencies

3]

BEEHEH

BEEBHBH

H E

Then you can enter data in a table format, similar to, e.g., MS Excel:

PC88235\DEVELOP...- dbo.CUSTOMER < Eelfadaiadl I SgrE el

Customerld CustomerMame CustormerMu... Address Phone PostCode PostAddress EMail Country
» | Bill Clinton 1000 NULL NULL NULL NULL NULL NULL
2 Jens Stoltenberg 1001 NULL NULL NULL NULL NULL NULL
3 Barak Obama 1002 NULL NULL NULL NULL NULL NULL
* NULL NULL NULL NULL NULL NULL NULL NULL NULL

Pooja Pawar

5UPDATE

The UPDATE statement is used to update existing records in a table.

The syntax is as follows:

UPDATE table name
SET columnl=value, column2=value2, ...
WHERE some column=some value

Note! Notice the WHERE clause in the UPDATE syntax. The WHERE clause specifies which
record or records that should be updated. If you omit the WHERE clause, all records will be
updated!

Example:

update CUSTOMER set AreaCode=46 where CustomerId=2

Before update:

Customerld | Customerfumber | LastMame | FirstMame | AreaCode | Address Phone

1 i1 1000 Srith Jahn Califarnia 11111111

2 2 1001 Jackszon Smith Londaon 222N

3 3 1002 Johhzen Jahn Landar 33333333
After update:

Customerld | CustomerMumber | Laztblame | FirstMlame | AreaCode | Address Phiohe

1 i1 1000 Smith Jahn 1 California 11111111
2 2 1001 Jackzon Smith London 2EREIEEE
3 3 1002 Johhzen Jahn Landan 33333333

If you don’t include the WHERE clause the result becomes:

Customerld | CustomerMumber | LastMame | FirstH ame Address Phone

1 i1 {1000 Smith Jahn Calfornia 11111111
2 2 1001 Jackzon Smith London)
3 3 1002 Johnzen Jaohn London 33333333

- So make sure to include the WHERE clause when using the UPDATE command!

32

33 UPDATE

Update Data in the Designer Tools:

The same way you insert data you can also update the data. Right---click on the specific table
and select “Edit Top 200 Rows”:

= @ Tables
3 Systern Tables
[FileTables
= dbo. AUTHOR
= dbo.BOOK
=] dbo.BOOK_LIBRARY
=] dbo.CATEGORY
= dbo.CHAPTER

E=f dbo. CUSTOME

O = T = I = R R R 3|

=1 dbo.LIBRARY Mew Table...

= dbo.LOAN Design

3 dbo.PUBLISHER Select Top 1000 Rows

— ke RaTlHG Edit Top 200 Rows
3 Views
3 Synonyms Script Table as »
3 Programmability View Dependencies

Then you can change your data:

PC88235\DEVELOP...- dbo.CUSTOMER < eliEadavlIEgn 1

Custormerld CustomerMame CustormerMu... Address Phone PostCode PostAddress EMail Country
» | Bill Clinton 1000 NULL NULL NULL NULL NULL NULL
2 Jens Stoltenberg 1001 NULL NULL NULL NULL NULL NULL
3 Barak Obama 1002 NULL NULL NULL NULL NULL NULL
* NULL NULL NULL NULL NULL NULL NULL NULL NULL

Pooja Pawar

6 DELETE

The DELETE statement is used to delete rows in a table.

Syntax:

DELETE FROM table name
WHERE some column=some value

Note! Notice the WHERE clause in the DELETE syntax. The WHERE clause specifies which
record or records that should be deleted. If you omit the WHERE clause, all records will be
deleted!

Example:

delete from CUSTOMER where CustomerId=2

Before delete:

Customerld | Customerdumber LaztMame | FirstMame | AreaCode | Address Phione

1 i1 1000 Smith Jahn 12 Calfarnia 11111111
2 2 1001 Jacksaon Smith 45 London 2RI
3 3 1002 Johhzen John 32 London 33333333

After delete:

Customerld | CustomerMumber | LaztMame | Firstlame | AreaCode | Address Phiore
: - 1000 Srmith John 12 Califorria 11111111
1002 Johnzen John 32 London 33333333

Delete All Rows:

It is possible to delete all rows in a table without deleting the table. This means that the
table structure, attributes, and indexes will be intact:

DELETE FROM table name

Note! Make sure to do this only when you really mean it! You cannot UNDO this statement!

Delete Data in the Designer Tools:

You delete data in the designer by right---click on the row and select “Delete”:

34

35 DELETE

PCEE235\DEVELOP...- dbo . CUSTOMER > EelJiZadsilliSgnl=v1H

Customerld CustomerMame CustomerMu... Address Phone PostCode
1 Bill Clinten 1000 MULL MULL MULL
2 lens Stoltenberg 1001 MNULL MNULL MNULL
[l e 1002 NULL NULL NULL
% | | QR Cirl<R NULL NULL NULL NULL
#& Cut Ctrl+X
53 Copy Ctrl+C
4 Paste Ctrl+V
X Delete Del
Pane]
'% Clear Results
Properties Alt+Enter

Pooja Pawar

/SELECT

The SELECT statement is probably the most used SQL command. The SELECT statement is
used for retrieving rows from the database and enables the selection of one or many rows or
columns from one or many tables in the database.

We will use the CUSTOMER table as an example.

The CUSTOMER table has the following columns:

Column Mame Draka Tvpe Allow Mulls
¥ CustonmerId - int]
CuskarnerMumber varchar(20)]
LastMame warchar(50)]
FirstMarne warchar{50)]
AreaCode int
Address warchar{50)
Phone warchar(20)

The CUSTOMER table contains the following data:

Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 i1 i 1000 Smith John 12 California 11111171

2 2 1001 Jackzon Smith 45 Londan 2ELDTL22

3 3 1002 Johnzen John 32 London 3333333
Example:

select * from CUSTOMER

Cuztomerld | CustomerMumber | LastMame | FirstMame | AreaCode | Addrezs | Phone

1 i1 1000 Smith John 12 Calfornia 1111717111
2 2 1001 Jackzan Srrith 45 London 2R
3 3 1002 Joknzen John 32 London 33333333

This simple example gets all the data in the table CUSTOMER. The symbol “*” is used when
you want to get all the columns in the table.

36

37 SELECT

If you only want a few columns, you may specify the names of the columns you want to
retrieve, example:

select CustomerId, LastName, FirstName from CUSTOMER

Customerld | LastMame | FirstM arme
1 i1 | Srith Jokin
5 hé Tackson it
3 3 Johnzen John

So in the simplest form we can use the SELECT statement as follows:

select <column names> from <table names>

If we want all columns, we use the symbol “*”
Note! SQL is not case sensitive. SELECT is the same as select.

The full syntax of the SELECT statement is complex, but the main clauses can be summarized
as:

SELECT
[ALL | DISTINCT]
[TOP (expression) [PERCENT] [WITH TIES]]
select list [INTO new table]
[FROM table source] [WHERE search condition]
[GROUP BY group by expression]
[HAVING search condition]
[ORDER BY ordef;expression [ASC | DESC] 1]

It seems complex, but we will take the different parts step by step in the next sections.

Select Data in the Designer Tools:

Right---click on a table and select “Select Top 1000 Rows”:

— -

= 3 Tables 3 Constraints
3 System Tables [Triggers

1 FileTables

= dbo.AUTHOR j IS::::;
= dbo.BOOK

= dbo.BOOK_LIBRARY
= dbo.CATEGORY

= dbo.CHAPTER

m

= dbo.LIBRARY MNew Table...

= dbo.LOAN Design

3 dbo.PUBLISHER Select Top 1000 Rows
= dbo.RATING
3 Views

3 Synonyms

3 Programmability View Dependencies

[Service Broker
— P, Full-Tevt indev

HEEEEEHBEEEEE

Edit Top 200 Rows
Script Table as 3

The following will appear:

Pooja Pawar

38 SELECT

SQLQueryl.sgl - PC..88235\hansha (54)) * EeljEad=TdlICgn =l

Script for SelectTopNRows command from S5Ms *¥%%%* !
—|SELECT TOP 1888 [CustomerId]

» [Customeriame]
» [Customeriumber]
» [Address]
» [Phone]
» [PostCode]
» [PostAddress]
»[EMail]
» [Country]
FROM [LIBRARYSYSTEM].[dba].[CUSTOMER]

W00% - 4

k
[Z Results 3 Messages

Customerld CustomerName CustomerMumber Address Phone PostCode

PostAddress EMal Country

1 i1 £ Bill Clinton 1000 MULL MULL MNULL NULL NULL ~ NULL
2 2 Jens Stotenberg 1001 MULL MULL ~ MULL NULL NULL ~ NULL
3 3 Barak Obama 1002 MULL MULL NULL NULL NULL ~ NULL

A Select query is automatically created for you which you can edit if you want to.

7.1 The ORDER BY Keyword

If you want the data to appear in a specific order you need to use the “order by” keyword.

Example:

select * from CUSTOMER order by LastName

Customerld | CugtomerMumber | LastMame | Firstlame | AreaCode | Address Phone

1 12 i 100 Jackzon Smith 45 London 22222222

2 3 1002 Johnzen John 32 London F333333
3 1 1000 Sriith Jahn 12

California - 11111111

You may also sort by several columns, e.g. like this:

select * from CUSTOMER order by Address, LastName

1 i1 : 1000 Srith Jahn 12 Calfornia 11111111
2 2 1001 Jackzaon Srith 45 London 2R
3 3 1002 Johnzen John 32 Landaon 33333333

Cuztomerld | CustomerMumber | LagtMame | Firstbame | AreaCode | Address Phone

If you use the “order by” keyword, the default order is ascending (“asc”). If you want the
order to be opposite, i.e., descending, then you need to use the “desc” keyword.

Pooja Pawar

39 SELECT

select * from CUSTOMER order by LastName desc

Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 {1000 Smith Jahn 12 Calfornia 11111111
2 1002 Johnzen Jaohn 32 Landaon 33333333
1001 Jackszon Smith 45 London L)

7.2 SELECT DISTINCT

In a table, some of the columns may contain duplicate values. This is not a problem,
however, sometimes you will want to list only the different (distinct) values in a table.

The DISTINCT keyword can be used to return only distinct (different) values.

The syntax is as follows:

select distinct <column names> from <table names>

Example:

select distinct FirstName from CUSTOMER

FirztH ame
1 i John
2 Sriith

7.3 The WHERE Clause

The WHERE clause is used to extract only those records that fulfill a specified criterion.

The syntax is as follows:

select <column names>
from <table name>
where <column name> operator value

Example:

select * from CUSTOMER where CustomerNumber='1001"

Cuztornerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address | Phone

1 12 - 10m Jackson Smith 45 London 22222222

Pooja Pawar

40 SELECT

Note! SQL uses single quotes around text values, as shown in the example above.

7.3.1 Operators

With the WHERE clause, the following operators can be used:

Operator Description

| |
| |

Less than or equal
LIKE Search for a pattern

Examples:

select * from CUSTOMER where AreaCode>30

| Custornerld | CustormerNumber | LastMame | FirstMame | AreaCode | Address | Phone |
1 iz - 1001 Jackson Smith 45 London 22222222
2 3 1002 Johnzen Jahn 32 London 33333333

7.3.2 LIKE Operator

The LIKE operator is used to search for a specified pattern in a column.

Syntax:

SELECT column name (s)
FROM table name
WHERE column name LIKE pattern

Example:

select * from CUSTOMER where LastName like 'J%'

| Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Addresz | Phone |
1 i2 - 10 Jackson Smith 45 London 22222222
2 3 1002 Johhzen John 32 London 33333333

Note! The "%" sign can be used to define wildcards (missing letters in the pattern) both
before and after the pattern.

Pooja Pawar

41 SELECT

select * from CUSTOMER where LastName like '%a$%'

Custarerld | CustomerMumber | LastMame | Firsthame | AreaCode | Addrezz | Phone

1 i2 100 Jackson Smith 45 London 22222222

You may also combine with the NOT keyword, example:

select * from CUSTOMER where LastName not like '$%$a%'

Cuztomerld | CustomerMumber | LastMame | FirstMame | AreaCode | Addiesz | Phone

1 i1 - 1000 Smith Johin 12 Califarnia - 11111111

...................................

2 3 1002 Johnzen Jahn 32 Londan 33333333

7.3.3 IN Operator

The IN operator allows you to specify multiple values in a WHERE clause.

Syntax:

SELECT column name (s)
FROM table name
WHERE column name IN (valuel,valueZ,...)

7.3.4 BETWEEN Operator

The BETWEEN operator selects a range of data between two values. The values can be
numbers, text, or dates.

Syntax:

SELECT column name (s)

FROM table name

WHERE column name

BETWEEN valuel AND value2

7.4 Wildcards

SQL wildcards can substitute for one or more characters when searching for data in a
database.

Note! SQL wildcards must be used with the SQL LIKE operator.

With SQL, the following wildcards can be used:

Pooja Pawar

42 SELECT

Wildcard Description

% A substitute for zero or more characters
_ A substitute for exactly one character
[charlist] Any single character in charlist
[Acharlist] Any single character not in charlist

or

[!charlist]

Examples:

SELECT * FROM CUSTOMER WHERE LastName LIKE 'J cks n'

I:ustl:umerld _______ Cuztomerumber | LastMame | Firstdame = AreaCode | Addiess | Phone

: 100 Jackzon Smith 45 London 22222222

SELECT * FROM CUSTOMER WHERE CustomerNumber LIKE '[10]%'

Customerld | CugtomerMumber | LastMame | Firstlame | AreaCode | Address Phone
1 i1 1000 Sriith Jahn 12 Calfornia 11111111
2 2 1001 Jackszon Smith 45 London L)

3 3 1002 Johnzen John 32 London 33333333

7.5 AND & OR Operators

The AND operator displays a record if both the first condition and the second condition is
true.

The OR operator displays a record if either the first condition or the second condition is true.

Examples:

select * from CUSTOMER where LastName='Smith' and FirstName='John'

Customerd | CustomerMumber | LastMame | Firstfame | AreaCode | Address Phone
Q0o Smith Jahn 12 Califarnia 111117111

select * from CUSTOMER where LastName='Smith' or FirstName='John'

Custornerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 i1 - 1000 Smith Jahn 12 Califormia - 11111111

2 3 1002 Johhzen John 32 Londaon 33333333

Combining AND & OR:

Pooja Pawar

43 SELECT

You can also combine AND and OR (use parenthesis to form complex expressions).

Example:

select * from CUSTOMER
where LastName='Smith' and (FirstName='John' or FirstName='Smith')

Customerld | CustomerMumber | LaztMame | Firsttame | AreaCode | Address FPhone
Srrith Jahn 12 Calfarria 1171117111

7.6 SELECT TOP Clause

The TOP clause is used to specify the number of records to return.

The TOP clause can be very useful on large tables with thousands of records. Returning a
large number of records can impact on performance.

Syntax:

SELECT TOP number |percent column name (s)
FROM table name

Examples:

select TOP 1 * from CUSTOMER

Customerd | CustormerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 i1 i 1000 Srith John 12 Califarnia 111117111

You can also specify in percent:

select TOP 60 percent * from CUSTOMER

Customerld | CustomerMurmber | LaztMame | FirstMame | AreaCode | Addresz Phone

i i 1000 Srith Jaki 12 Califormia 11111111

2 2 1001 Jackszon Smith 45 London L

This is very useful for large tables with thousands of records

7.7 Alias

Pooja Pawar

44

SELECT

You can give a table or a column another name by using an alias. This can be a good thing to

do if you have very long or complex table names or column names.
An alias name could be anything, but usually it is short.

SQL Alias Syntax for Tables:

SELECT column name (s)
FROM table name
AS alias name

SQL Alias Syntax for Columns:

SELECT column name AS alias name
FROM table name

7.8 Joins

SQL joins are used to query data from two or more tables, based on a relationship between

certain columns in these tables.

single Query using Joins

Get Data from multiple tables in a

Example:
COURSE
Column Name Data Type
SCHOOL @ Courseld int
Column Name Data Type Allow Nulls CourseName varchar(50)
@ Schoolld int e — Schoolld int

SchoolName varchar(50) Description varchar(1000)

Description varchar(1000) V]

Address v

Phone varchar(50) v

PostCode varchar(50) v

PostAddress varchar(50) v
S€ | e Ct CourseName

- ! Industrial IT
SchoolName, iy S
3 TUC Systems and Control Laboratory
CourseName
from You link Primary Keys and Foreign Keys together
SCHOOL !
[

|
inner join COURSE on SCHOOL.Schoolld = COURSE.Schoolid

Pooja Pawar

45 SELECT

7.8.1 Different SQL JOINs

Before we continue with examples, we will list the types of JOIN you can use, and the
differences between them.

e JOIN: Return rows when there is at least one match in both tables

e LEFTJOIN: Return all rows from the left table, even if there are no matches in the
right table

e RIGHT JOIN: Return all rows from the right table, even if there are no matches in the
left table

e FULL JOIN: Return rows when there is a match in one of the tables

Example:
Given 2 tables:

e SCHOOL
e CLASS

The diagram is shown below:

CLASS
SCHOOL Calurmn Marne Daka Type Allows Mulls
Column Mame Data Type Allowy Kulls 7 ClassId ink O
? Schoolld it O 23 Schoolld ink Ol
SchoolName varchar{50) [l ClassMame warchar(50) O
Description varchar(1000) Description warchar(1000}
Address varchar(S0) O
Phone warchar(S0)
PostCode varchar(S0)
Postaddress warchar(S0)
O

We want to get the following information using a query:

SchoolName ClassName

In order to get information from more than one table we need to use the JOIN. The JOIN is
used to join the primary key in one table with the foreign key in another table.

Pooja Pawar

46 SELECT

select

SCHOOL. SchoolName,
CLASS.ClassName
from

SCHOOL

INNER JOIN CLASS ON SCHOOL.SchoolId = CLASS.SchoolId

SchoolMame | ClazsMame

1 iTUC : SCE1
ER T — oo
3 TUC PT1
4 TUC PT2
5 NTNU A1

E NTNU 42

Pooja Pawar

3SQL Scripts

A SQL script is a collection of SQL statements that you can execute in one operation. You can
use any kind of SQL commands, such as insert, select, delete, update, etc. In addition you
can define and use variables, and you may also use program flow like If---Else, etc. You may
also add comments to make the script easier to read and understand.

8.1 Using Comments

Using comments in you SQL script is important to make the script easier to read and
understand.

In SQL we can use 2 different kinds of comments:

e Single---line comment
e Multiple---line comment

8.1.1 Single--line comment

We can comment one line at the time using “----" before the text you want to comment out.

Syntax:

-— text of comment

8.1.2 Multiple---line comment

We can comment several line using “/*” in the start of the comment and “*/” in the end of
the comment.

Syntax:

/*
text of comment
text of comment
*/

47

48 SQL Scripts

8.2 Variables

The ability to using variables in SQL is a powerful feature. You need to use the keyword
DECLARE when you want to define the variables. Local variables must have the the symbol
“@"” as a prefix. You also need to specify a data type for your variable (int, varchar(x), etc.).

Syntax for declaring variables:

declare @local variable data type

If you have more than one variable you want to declare:

declare
@myvariablel data type,
@myvariable2 data type,

When you want to assign values to the variable, you must use either a SET or a SELECT
statement.

Example:

declare (@myvariable int

set (@myvariable=4

If you want to see the value for a variable, you can e.g., use the PRINT command like this:

declare @myvariable int
set @myvariable=4

print (@myvariable

The following will be shown in SQL Server:

''] hMeszages
E)

Assigning variables with a value from a SELECT statement is very useful.

Pooja Pawar

49 SQL Scripts

We use the CUSTOMER table as an example:

Cuztormerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 E 1000 Smith John 12 Calfornia 111117111
2 1001 Jackzan Srrith 45 Landaon 2R
1002 Johnzen John 32 London 33333333

You can assign a value to the variable from a select statement like this:

declare @mylastname varchar (50)

select @mylastname=LastName from CUSTOMER where CustomerId=2
print @mylastname

'='| Meszages

Jacks=son

You can also use a variable in the WHERE clause LIKE, e.g., this:

declare @find wvarchar (30)
set @find = 'J%'

select * from CUSTOMER
where LastName LIKE @find

Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Addresz | Phone
: Jackzon Smith 45 London 22222222
Johnhzen Jahn 32 London 33333333

8.3 Built---in Global Variables

SQL have lots of built-—-in variables that are very useful to use in queries and scripts.

38.3.1 @ @IDENTITY

After an INSERT, SELECT INTO, or bulk copy statement is completed, @ @IDENTITY contains
the last identity value that is generated by the statement. If the statement did not affect any
tables with identity columns, @ @IDENTITY returns NULL. If multiple rows are inserted,
generating multiple identity values, @ @IDENTITY returns the last identity value generated.

Example:

Given to tables; SCHOOL and COURSE:

Pooja Pawar

50 SQL Scripts

SCHOOL table: COURSE table:

Schoolld | SchoolMame | Descrption | Address = Phone | PostCode | PostAddiess

Courseld | CourzeMame = Schoolld | Description

1 i NULL MULL WULL WULL NULL 1 i SCEZ005 1 MULL
2 NTHU WULL WULL WULL WULL NULL 2 ‘2 SCE1106 1 MULL
3 3 SCE4206 1 RULL
4 4 SCE4106 1 RULL

We want to insert a new School into the SCHOOL table and we want to insert 2 new Courses

in the COURSE table that belong to the School we insert. To find the “Schoolld” we can use
the @ @IDENTITY variable:

declare (@SchoolId int

—-— Insert Data into SCHOOL table
insert into SCHOOL (SchoolName) values ('MIT')

select @Schoolld = QRRIDENTITY

Insert Courses for the specific School above in the COURSE table
insert into COURSE (SchoolId,CourseName) values (Q@SchoolId, 'MIT-101"')
insert into COURSE (SchoolId,CourseName) values (@SchoolId, 'MIT-201"'")

The result becomes:

SCHOOL table: COURSE table:

SchoolMame | Description | Addresz | Phone | PostCode | Postdddress

Courzeld
Tuc MULL MULL WULL MULL MULL et

CourgeMame | Schoolld | Description

10 | SCE2006 1 NULL

2 MTHL MULL MULL MULL MULL MULL 2 5 SCE1108 1 HULL
3 16 MIT MULL MULL MULL MULL MULL

a3 SCE4206 1 NULL

4 4 SCE4106 1 NULL

5 [= MIT-107 16 NULL

B |s MIT-201 16 NULL

8.4 Flow Control

As with other programming languages you can use different kind of flow control, such as
IF---ELSE, WHILE, etc, which is very useful.

3.4.1 IF — ELSE

The IF--ELSE is very useful. Below we see an example:

declare (@customerNumber int

select @customerNumber=CustomerNumber from CUSTOMER
where CustomerId=2

Pooja Pawar

51 SQL Scripts

if QcustomerNumber > 1000

print 'The Customer Number is larger than 1000’
else

print 'The Customer Number is not larger than 1000'

'='| Messages
The Customer Mumher is larger thawn 1000

BEGIN...END:

If more than one line of code is to be executed within an IF sentence you need to use
BEGIN...END.

Example:

select (@customerNumber=CustomerNumber from CUSTOMER where CustomerId=2

if QcustomerNumber > 1000
begin
print 'The Customer Number is larger than 1000'
update CUSTOMER set AreaCode=46 where CustomerId=2
end
else
print 'The Customer Number is not larger than 1000'

8.4.2 WHILE

We can also use WHILE, which is known from other programming languages.
Example:

We are using the CUSTOMER table:

Customnerld | Customerfumber | Laztblame | Firsttame | AreaCode | Address Phone

1 i1 E 1000 Smith Jahn 12 Calfornia 11111111
2 2 1001 Jackson Smith 45 London 2RI
3 3 1002 Johnzen John 32 London 33333333

and the following query:

while (select AreaCode from CUSTOMER where CustomerId=1l) < 20
begin

update CUSTOMER set AreaCode = AreaCode + 1
end

select * from CUSTOMER

Pooja Pawar

52 SQL Scripts

Customerld | CustomerMumber | LastMame | FirstMame Address Phone

1 i1 E 1000 Smith John Califormia 111117111
2 2 1001 Jackzan Srrith London 2R
3 3 1002 Johnzen John London 33333333

As you can see the code inside the WHILE loop is executed as long as “AreaCode” for

Customerld=1 is less than 20. For each iteration is the “AreaCode” for that customer
incremented with 1.

3.4.3 CASE

The CASE statement evaluates a list of conditions and returns one of multiple possible result
expressions.

Example:

We have a “GRADE” table that contains the grades for each student in different courses:

select GradeId, StudentId, CourselId, Grade from GRADE

[arad

Studentld | Courzeld = Grade
1 1 4

O = L —
I I U L
— L ra

]
1]
3
]

LR I T B T R

In the “GRADE” table is the grades stored as numbers, but since the students get grades with
the letters A..F (A=5, B=4, C=3, D=2, E=1, F=0), we want to convert the values in the table
into letters using a CASE statement:

select

Gradeld,

StudentId,

Courseld,

case Grade
when 5 then 'A’
when 4 then 'B'
when 3 then 'C'
when 2 then 'D'
when 1 then 'E'
when 0 then 'F'
else '-'

end as Grade

from

GRADE

Pooja Pawar

53

SQL Scripts
Gradeld = Studentld Courseld | Grade
1 gqmmmmm:1 1 :
e — 5 1 .
3 3 3 3 F
4 4 4 3 C
4] 4] 1 K] &

8.4.4 CURSOR

In advances scripts, CURSORs may be very useful. A CURSOR works like an advanced WHILE
loop which we use to iterate through the records in one or more tables.

CURSORS are used mainly in stored procedures, triggers, and SQL scripts.
Example:

We use the CUSTOMER table as an example:

Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address || Phone
1 i1 - 1000 Smith John 20 Califorria | 11111111
2 2T 1001 Jackson Srmith 53 London | 2222
3 3 1002 Johnsen Jahn 40 London 33333333
4 [1003 Obama Barak, A1 Mevada | 4444

We will create a CURSOR that iterate through all the records in the CUSTOMER table and

check if the Phone number consists of 8 digits, if not the script will replace the invalid Phone
number with the text “Phone number is not valid”.

Here is the SQL Script using a CURSOR:

DECLARE
@CustomerId int,
@phone varchar (50)

DECLARE db cursor CURSOR
FOR SELECT CustomerId from CUSTOMER

OPEN db_cursor
FETCH NEXT FROM db cursor INTO @CustomerId

WHILE QQFETCH_STATUS = O
BEGIN

select @phone=Phone from CUSTOMER where CustomerId=@CustomerId

if LEN (@phone) < 8

update CUSTOMER set Phone='Phone number is not valid' where
CustomerId=@CustomerId

Pooja Pawar

54 SQL Scripts

FETCH NEXT FROM db cursor INTO QCustomerId
END

CLOSE db cursor
DEALLOCATE db cursor

The CUSTOMER table becomes:

Cuztorerld | Custornerfurber | LasztMame | FirstMame | AreaCode | Addresz |Phone
1 Srnith John 20 Calitornia | 11111111
2 2 100 Jackszon Srnith 53 London Fhone number iz not valid
3 3 1002 Johnzen John 40 Londaon 33333333
4 B 1003 Obama Barak 51 Mewada | Phone number is not valid

Creating and using a CURSOR includes these steps:

e Declare SQL variables to contain the data returned by the cursor. Declare one
variable for each result set column.

e Associate a SQL cursor with a SELECT statement using the DECLARE CURSOR
statement. The DECLARE CURSOR statement also defines the characteristics of the
cursor, such as the cursor name and whether the cursor is read---only or forward---only.

e Use the OPEN statement to execute the SELECT statement and populate the cursor.

e Use the FETCH INTO statement to fetch individual rows and have the data for each
column moved into a specified variable. Other SQL statements can then reference
those variables to access the fetched data values.

e When you are finished with the cursor, use the CLOSE statement. Closing a cursor
frees some resources, such as the cursor's result set and its locks on the current row.

The DEALLOCATE statement completely frees all resources allocated to the cursor,
including the cursor name.

Pooja Pawar

9Views

Views are virtual table for easier access to data stored in multiple tables.

Create View:
IF EXISTS (SELECT name A View is a “virtual” table that
FROM sysobjects . .
IR AR e e ESEDaEE can contain data from multiple
AND type = 'V') tables
DROP VIEW CourseData
GO ”
(_//_—-—-—— The Name of the View
CREATE VIEW CourseData
AS
SELECT IrT5|de the View you join thg
SCHOOL. Schoolld, different tables together using

SCHOOL. SchoolName,
COURSE.Courseld,

COURSE.CourseName,
COURSE.Description

the JOIN operator

FROM
SCHOOL
INNER JOIN COURSE ON SCHOOL.SchoolId = COURSE.SchoolId
GO 3

You can Use the View as an

Using the View: ordinary table in Queries :

select * from CourseData

Schoolld SchoolName Courseld CourseName Description
1 1 TuC 1 Industrial IT The best course ever
2 1 TUC 2 Control with Implementation Control Theory
3 1 TUC 3 Systems and Control Laboratory Practical Lav course

Syntax for creating a View:

CREATE VIEW <ViewName>
AS

... but it might be easier to do it in the graphical view designer that are built into SQL
Management Studio.

Syntax for using a View:

select * from <MyView> where

As shown above, we use a VIEW just like we use an ordinary table.

55

56 Views

Example:

We use the SCHOOL and CLASS tables as an example for our View. We want to create a View
that lists all the existing schools and the belonging classes.

CLASS
SCHOOL Calurn Mame Daka Tvpe Al Mulls
Calumn Mame Daka Tvpe Al Mulls § ClassId ik O
@ Schoolld ink O e ———x Schoolld ink |
schoolMame varchar(50) O Classhame warchar(s0) O
Diescription warchar(1000) Description warchar(1000}
address warchari50) O
Phaone warchar{50)
PostiCods warchar{ 500
Postaddress warchar{50)
O

We create the VIEW using the CREATE VIEW command:

CREATE VIEW SchoolView
AS

SELECT

SCHOOL. SchoolName,

CLASS.ClassName

FROM

SCHOOL

INNER JOIN CLASS ON SCHOOL.SchoolId = CLASS.SchoolId

Note! In order to get information from more than one table, we need to link the tables
together using a JOIN.

9.1 Using the Graphical Designer

We create the same View using the graphical designer in SQL Server Management Studio:

Pooja Pawar

57

Views

Object Explorer 3

Creating Views using the Editor

¢ Select necessary
columns

Sort Order Filter Or... or... or..

< The Code is automatically
generated

Comnect~ | 47 43 u T (2] &
= ; - [_* (all Columns)
= [Databases lv. g:m"tm
@ [System Databases i M:':sm
® [IWOICING
® SCADA E
5 b’ e Graphical Interface where you can select columns you need
[_J Database Diagrams <
@ [Tables 4" T Alas | Table Output | Sat Type
®Ca 1) » | schoolilame SCHOOL
@ [Synon r" New Yiew. .. | ClassName: CLASS
o =
[Progra ;
@ O Servied | e > =
@ (3 Securiy Start PowerShell —
® [J TEST SELECT doo.SCHOOL Schoobiame, dbo.CLASS Classiame
.SCHOOL INNER JOIN
[Security Reports » dbo.CLASS ON dbo.SCHOOL . Schoolld = dbo.CLASS. Schoolld
[_J Server Objects
[Replication Refresh
6. [Menagement | SchoolName — ClassName
h » TuC SCE1
2 T %) e pm Y= Show the results
— S Tuc PT1
Tables [vm | Functions | Synonyms | e RE:
licLiss | { 4|1 of6 | b M b Cellis Read Only.
COURSE
GRADE
STUDENT
STUDENT_COURSE
TEACHER
TEACHER_COURSE @
Enter a name for the view:
Add necessary tables [schoolview| 1
l] [Cancel]
Refresh Add Close

Save the View

Step 1: Right---click on the View node and select “New View...”:

Object Explorer

Connect~ 4 & 5 F [F] 5
= [Databases
I? Swstem Databases
L INWOICING

|| scaDa
= |) sCHOOL
[Database Diagrams
[Tables
Ca NS
[syno | Mews Yiew, ., |i
[Progra]
) Filker 3
[Service
[Securit Start Powershel
|) TEST
[Security Repaorts 3
[Server Objects
[Replication Refresh

[Management

Step 2: Add necessary tables:

Pooja Pawar

58 Views

Add Table

Tables |Uiews | Functions | Synonyms
L
COURSE

STUDENT_COURSE
TEACHER
TEACHER _COURSE

[Refresh] [Add] [Close:

Step 3: Add Columns, etc.

& CLASS _|
ERSEHONE
L [* (Al Columns)
L [* ¢all Columns)
[| schoolzd
[v]Schaaliiame Select necessary
Description |_|Description - columns
Qnddress ﬂ
am
Column Alias Table Output | Sort Type Sort Order Filter Or... Q... Or..
> SCHOCL
CLASS
(=]
(=]
m]
<
SELECT dbo, SCHOCL, SchoolMame, dbo,CLASS, Classhlame
FROM dbo,SCHOOL INMER JOTH The Code is automatically
dbo.CLASS OM dbo, SCHOOL, Schoolld = dbo, CLASS, SchoolId *__ generated
SchoalMarme ClassMarne
b TuC SCE1
e - +— Show the results
TuZ PT1
4 4 |1 ofe6 bkl ») | Cellis Read Only,
Step 4: Save the VIEW:
Choose Mame | X |

Enker a name for the view:
|Su:h|:u:||'-.-'iew| |

[K][Cancel]

Pooja Pawar

59

Views

Step 5: Use the VIEW in a query:

select * from SchoolView

(= B B S 5 B L

Schoalt ame

......................................

ClazsM ame

| SCE1

SCEZ
PT1
PT2
&1

a2

Pooja Pawar

10 Stored Procedures

A Stored Procedure is a precompiled collection of SQL statements. In a stored procedure you
can use if sentence, declare variables, etc.

Create Stored Procedure:

IF EXISTS (SELECT name , A Stored Procedure is like Method in C#
FROM sysobjects L. B .
WHERE name = 'StudentGrade' - itis a piece of code with SQL
AND e="p' ..
B e e commands that do a specific task—and
06 you reuse it

CREATE PROCEDURE StudentGrade
@Student varchar(50),
@Course varchar(10), Procedure Name
@Grade VarChar(l) \
Input Arguments

AS

DECLARE
@Studentld int, <€ Internal/Local Variables

@Cewrseid jnt Note! Each variable starts with @

select Studentld from STUDENT where StudentName = @Student

select Courseld from COURSE where CourseName = @Course

SQL Code (the “body” of the

insert into GRADE (Studentld, Courseld, Grade) Stored Procedure)

values (@Studentld, @Courseld, @Grade)
GO

Using the Stored Procedure:
execute StudentGrade 'John Wayne', 'SCE2006', 'B'

Syntax for creating a Stored Procedure:

CREATE PROCEDURE <ProcedureName>
@<Parameterl> <datatype>

declare
@myVariable <datatype>
Create your Code here

Note! You need to use the symbol “@” before variable names.

Syntax for using a Stored Procedure:

EXECUTE <ProcedureName (..) >

Example:

60

61 Stored Procedures

We use the SCHOOL and CLASS tables as an example for our Stored Procedure. We want to
create a Stored Procedure that lists all the existing schools and the belonging classes.

CLASS
SCHOOL Calurnn Mame Daka Type Allavs Mulls
Calumn Mame Data Type Allavs Mulls % Classd it O
? Schoolld int [l 3 Schoolld ink |
SchaolMame warchar(30) | Classhame warchar(0) |
Description warchar(1000) Description warchar(1000}
address warchar(50) O
Phaone varchar{50)
PostiCode warchar(500
Postaddress varchar{50)
O

We create the Stored Procedure as follows:

CREATE PROCEDURE GetAllSchoolClasses
AS

select

SCHOOL. SchoolName,

CLASS.ClassName

from

SCHOOL

inner join CLASS on SCHOOL.SchoolId = CLASS.SchoolId
order by SchoolName, ClassName

When we have created the Stored Procedure we can run (or execute) the Stored procedure
using the execute command like this:

execute GetAllSchoolClasses

SchoolMame | ClazsMame

1 I NTHU P Al
T — .

3 TUC PT1
4 TUC PT2
5 TUC SCET
E TUC SCEZ

We can also create a Store Procedure with input parameters.

Example:

Pooja Pawar

62 Stored Procedures

We use the same tables in this example (SCHOOL and CLASS) but now we want to list all
classes for a specific school.

The Stored Procedure becomes:

CREATE PROCEDURE GetSpecificSchoolClasses
@SchoolName varchar (50)
AS

select

SCHOOL. SchoolName,

CLASS.ClassName

from

SCHOOL

inner join CLASS on SCHOOL.SchoolId = CLASS.SchoolId
where SchoolName=@SchoolName

order by ClassName

We run (or execute) the Stored Procedure:

execute GetSpecificSchoolClasses 'TUC'

SchoolMame | ClazsMame

1 i TUC L PT
T o
3 TUC SCET
4 TUC SCEZ

or:

execute GetSpecificSchoolClasses 'NTNU'

SchoolMame | ClazsMame

1 P WTMU F A1

When we try to create a Stored Procedure that already exists we get the following error
message:

There is already an object named 'GetSpecificSchoolClasses' in the database.

Then we first need to delete (or DROP) the old Stored Procedure before we can recreate it
again.

We can do this manually in the Management Studio in SQL like this:

Pooja Pawar

63 Stored Procedures

= [Programmability

= [J Stored Procedures
[Svystem Stored Procedures
&l dbo.GetalschoolClasses
[=ml dbo. GetSpecificSchaolClasses
E] dbo.StudentGrade Mew Stored Procedure. ..

[Functions Modify

[l Database Triggers

[Assemblies

Execute Stored Procedure. ..

1 Types Script Stared Procedure as 3
[Rules
[Defaults iew Dependencies

[l Service Broker

Palicies b
[l Security
| TEST Facets
Security o
Server Objects Start PowerShel
Replication A X
Managemenkt

Rename

| Delete

A better solution is to add code for this in our script, like this:

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = GetSpecificSchoolClasses '
AND type = 'P')
DROP PROCEDURE GetSpecificSchoolClasses
GO

CREATE PROCEDURE GetSpecificSchoolClasses
@SchoolName varchar (50)
AS

select

SCHOOL. SchoolName,

CLASS.ClassName

from

SCHOOL

inner join CLASS on SCHOOL.SchoolId = CLASS.SchoolId
where SchoolName=@SchoolName

order by ClassName

So we use CREATE PROCEDURE to create a Stored Procedure and we use DROP PROCEDURE
to delete a Stored Procedure.

10.1 NOCOUNT ON/NOCOUNT OFF

In advanced Stored Procedures and Script, performance is very important. Using SET
NOCOUNT ON and SET NOCOUNT OFF makes the Stored Procedure run faster.

SET NOCOUNT ON stops the message that shows the count of the number of rows affected
by a Transact---SQL statement or stored procedure from being returned as part of the result
set.

Pooja Pawar

64 Stored Procedures

SET NOCOUNT ON prevents the sending of DONE_IN_PROC messages to the client for each
statement in a stored procedure. For stored procedures that contain several statements that
do not return much actual data, or for procedures that contain Transact---SQL loops, setting
SET NOCOUNT to ON can provide a significant performance boost, because network traffic is
greatly reduced.

Example:

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = 'sp LIMS IMPORT REAGENT'
AND type = 'P')
DROP PROCEDURE sp LIMS IMPORT REAGENT
GO

CREATE PROCEDURE sp LIMS IMPORT REAGENT
@Name wvarchar (100),

@QLotNumber varchar (100),

@QProductNumber wvarchar (100),
@Manufacturer varchar (100)

AS
SET NOCOUNT ON

if not exists (SELECT ReagentId FROM LIMS REAGENTS WHERE [Name]=@Name)
INSERT INTO LIMS REAGENTS ([Name], ProductNumber, Manufacturer)
VALUES (@Name, @ProductNumber, @Manufacturer)

else

UPDATE LIMS REAGENTS SET
[Name] = @Name,
ProductNumber = @ProductNumber,
Manufacturer = @Manufacturer,

WHERE [Name] @Name

SET NOCOUNT OFF
GO

This Stored Procedure updates a table in the database and in this case you don’t normally
need feedback, sp setting SET NOCOUNT ON at the top in the stored procedure is a good
idea. it is also good practice to SET NOCOUNT OFF at the bottom of the stored procedure.

Pooja Pawar

11 Functions

With SQL and SQL Server you can use lots of built---in functions or you may create your own
functions. Here we will learn to use some of the most used built---in functions and in addition
we will create our own function.

11.1 Built-—-in Functions

SQL has many built---in functions for performing calculations on data.

We have 2 categories of functions, namely aggregate functions and scalar functions.
Aggregate functions return a single value, calculated from values in a column, while scalar
functions return a single value, based on the input value.

Aggregate functions --- examples:

e AVG() -- Returns the average value

e STDEV() -- Returns the standard deviation value
e COUNT() -~ Returns the number of rows

e MAX() -- Returns the largest value

e MIN() -- Returns the smallest value

e SUM() - Returns the sum

e etc.

Scalar functions -- examples:

e UPPER() - Converts a field to upper case

e LOWER()-- Converts a field to lower case

e LEN() - Returns the length of a text field

e ROUND() - Rounds a numeric field to the number of decimals specified
o GETDATE() -- Returns the current system date and time

e etc.

11.1.1 String Functions

Here are some useful functions used to manipulate with strings in SQL Server:

65

66

Functions

CHAR
CHARINDEX
REPLACE
SUBSTRING
LEN
REVERSE
LEFT

RIGHT
LOWER
UPPER
LTRIM
RTRIM

Read more about these functions in the SQL Server Help.

11.1.2

Date and Time Functions

Here are some useful Date and Time functions in SQL Server:

DATEPART
GETDATE
DATEADD
DATEDIFF
DAY
MONTH
YEAR
ISDATE

Read more about these functions in the SQL Server Help.

11.1.3

Mathematics and Statistics Functions

Here are some useful functions for mathematics and statistics in SQL Server:

COUNT
MIN, MAX

COsS, SIN, TAN

SQRT
STDEV
MEAN
AVG

Pooja Pawar

67 Functions

Read more about these functions in the SQL Server Help.

11.1.4 AVG()

The AVG() function returns the average value of a numeric column.

Syntax:

SELECT AVG (column name) FROM table name

Example:

Given a GRADE table:

Column Mame Dakta Type Allows Mulls
¥7 | Gradeld int]
StudentId ink]
Courseld ik]
Grade Float]
Commenk warchari 1000)

We want to find the average grade for a specific student:

select AVG(Grade) as AvgGrade from GRADE where StudentId=1

Awglrade

................................

11.1.5 COUNT()

The COUNT() function returns the number of rows that matches a specified criteria.

The COUNT(column_name) function returns the number of values (NULL values will not be
counted) of the specified column:

SELECT COUNT (column name) FROM table name

The COUNT(*) function returns the number of records in a table:

SELECT COUNT (*) FROM table name

Pooja Pawar

68 Functions

We use the CUSTOMER table as an example:

Cuztormerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 i1 §1DDD Smith John 12 Calfornia 111117111
2 2 1001 Jackzan Srrith 45 Landaon 2R
3 3 1002 Johnzen John 32 London 33333333

select COUNT (*) as NumbersofCustomers from CUSTOMER

MurnberofCustamers
1 i3

11.1.6 The GROUP BY Statement

Aggregate functions often need an added GROUP BY statement.

The GROUP BY statement is used in conjunction with the aggregate functions to group the
result---set by one or more columns.

Syntax

SELECT column name, aggregate function (column name)
FROM table name

WHERE column name operator value

GROUP BY colamn_name

Example:
We use the CUSTOMER table as an example:

Cuztormerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 i1 §1DDD Smith John 12 Calfornia 111117111
2 2 1001 Jackzan Srrith 45 Landaon 2R
3 3 1002 Johnzen John 32 London 33333333

If we try the following:

select FirstName, MAX (AreaCode) from CUSTOMER

We get the following error message:

Column 'CUSTOMER.FirstName' is invalid in the select list because it is not contained in either
an aggregate function or the GROUP BY clause.

The solution is to use the GROUP BY:

select FirstName, MAX (AreaCode) from CUSTOMER
group by FirstName

Pooja Pawar

69 Functions

FirstMame | [Mo column name]

1§ John P a2

11.1.7 The HAVING Clause

The HAVING clause was added to SQL because the WHERE keyword could not be used with
aggregate functions.

Syntax:

SELECT column name, aggregate function (column name)
FROM table name

WHERE column name operator value
GROUP BY column name

HAVING aggregate function (column name) operator value

We use the GRADE table as an example:

select * from GRADE

Gradeld = Studentld = Courzeld = Grade = Comment

1 i1 i1 1 4 MULL
- NN 5 , - NULL
] 3 3 3 1] HULL
4 4 4 3 3 MULL
4]] 1 3] MULL

First we use the GROUP BY statement:

select Courseld, AVG (Grade) from GRADE
group by Courseld

Courzeld | [Mo column name]

. L 45

2 3 ? 2 EEEEERERREEEEY

While the following query:

select CourselId, AVG (Grade) from GRADE
group by Courseld
having AVG (Grade)>3

Courzeld | [Mo column name]

Pooja Pawar

70 Functions

11.2 User---defined Functions

IN SQL we may also create our own functions, so---called user---defined functions.

A user---defined function is a routine that accepts parameters, performs an action, such as a
complex calculation, and returns the result of that action as a value. The return value can
either be a scalar (single) value or a table. Use this statement to create a reusable routine
that can be used in other queries.

In SQL databases, a user---defined function provides a mechanism for extending the
functionality of the database server by adding a function that can be evaluated in SQL
statements. The SQL standard distinguishes between scalar and table functions. A scalar
function returns only a single value (or NULL), whereas a table function returns a (relational)
table comprising zero or more rows, each row with one or more columns.

Stored Procedures vs. Functions:

e Only functions can return a value (using the RETURN keyword).

e Stored procedures can use RETURN keyword but without any value being passed[1]

e Functions could be used in SELECT statements, provided they don’t do any data
manipulation and also should not have any OUT or IN OUT parameters.

e Functions must return a value, but for stored procedures this is not compulsory.

e Afunction can have only IN parameters, while stored procedures may have OUT or IN
OUT parameters.

e Afunction is a subprogram written to perform certain computations and return a
single value.

e Astored procedure is a subprogram written to perform a set of actions, and can
return multiple values using the OUT parameter or return no value at all.

User--defined functions in SQL are declared using the CREATE FUNCTION statement.

When we have created the function, we can use the function the same way we use built--in
functions.

Pooja Pawar

12 Triggers

A database trigger is code that is automatically executed in response to certain events on a
particular table in a database.

A Trigger is executed when you insert, update or delete data in a Table specified in
the Trigger.
Create the Trigger:
IF EXISTS (SELECT name .
FROM sysobjects lnSIde the
WHERE name = 'CalcAvgGrade' Trigger you can
AND type = 'TR') d S L
- DROP TRIGGER CalgAvgGrade Name of the Trigger use ordinary Q
statements,
CREATE TRIGGER CalcAvgGrade ON GRADE €— Specify which Table the create variables,
FOR UPDATE, INSERT, DELETE 3
ne — Trigger shall work on etc.
Specify what kind of operations the Trigger
DECLARE
@StudentId int, shall act on
@AvgGrade float €— 5
Internal/Local Variables
select @StudentId = StudentId from INSERTED
SQL Code
select @AvgGrade = AVG (Grade) om GRADE where StudentId = @StudentId (The ”body"
update STUDENT set Tot rade = QAvgGrade where StudentId = @StudentId of the Tl’igger)
GO
Note! “INSERTED” is a temporarily table containing the latest inserted data, and it is very
handy to use inside a trigger

Syntax for creating a Trigger:

CREATE TRIGGER <TriggerName> on <TableName>
FOR INSERT, UPDATE, DELETE

AS

. Create your Code here

GO

The Trigger will automatically be executed when data is inserted, updated or deleted in the
table as specified in the Trigger header.

INSERTED and DELETED:

Inside triggers we can use two special tables: the DELETED table and the INSERTED tables.
SQL Server automatically creates and manages these tables. You can use these temporary,

71

72 Triggers

memory---resident tables to test the effects of certain data modifications. You cannot modify
the data in these tables.

The DELETED table stores copies of the affected rows during DELETE and UPDATE
statements. During the execution of a DELETE or UPDATE statement, rows are deleted from
the trigger table and transferred to the DELETED table.

The INSERTED table stores copies of the affected rows during INSERT and UPDATE
statements. During an insert or update transaction, new rows are added to both the
INSERTED table and the trigger table. The rows in the INSERTED table are copies of the new
rows in the trigger table.

Example:
We will use the CUSTOMER table as an example:

Customerld | Customerdumber LastMame | FirstMame | AreaCode | Address Phone

1 i1 E 1000 Smith John 20 Calfornia 11111111
2 2 1001 Jackzan Srith L] Landan 2R
3 3 1002 Johnzen John 40 London 33333333

We will create a TRIGGER that will check if the Phone number is valid when we insert or
update data in the CUSTOMER table. The validation check will be very simple, i.e., we will
check if the Phone number is less than 8 digits (which is normal length in Norway). If the
Phone number is less than 8 digits, the following message “Phone Number is not valid” be
written in place of the wrong number in the Phone column.

The TRIGGER becomes something like this:

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = 'CheckPhoneNumber'
AND type = 'TR')
DROP TRIGGER CheckPhoneNumber
GO

CREATE TRIGGER CheckPhoneNumber ON CUSTOMER
FOR UPDATE, INSERT

AS

DECLARE

@CustomerId int,

@Phone wvarchar (50),

@Message varchar (50)

set nocount on

select @CustomerId = CustomerId from INSERTED

select @Phone = Phone from INSERTED

Pooja Pawar

73 Triggers

set @Message = 'Phone Number ' + @Phone + ' is not wvalid'

if len(@Phone) < 8 --Check if Phone Number have less than 8 digits
update CUSTOMER set Phone = @Message where CustomerId = @CustomerId

set nocount off

GO

We test the TRIGGER with the following INSERT INTO statement:

INSERT INTO CUSTOMER

(CustomerNumber, LastName, FirstName, AreaCode, Address, Phone)

VALUES
('1003', 'Obama', 'Barak', 51, 'Nevada', '4444"')

The results become:

Cuztomerd | CuztomerMumber | LastMame | FirstMame | AreaCode | Addresz Phone

1 {1000 Smith John 20 Califormia 117111111
2 J 10Mm Jackzon Srnith 53 London 22222222
3 1002 Johnzen John an London 23333333
4 1003 Obama Barak. a1 Mevada Y Phone Humber 4444 is not v@

As you can see, the TRIGGER works as expected.

We try to update the Phone number to a valid number:

update CUSTOMER set Phone = '44444444' where CustomerNumber = '1003'

The results become:

Cuztomerd | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 i 1000 Smith Johin 20 California 111117111
2 1001 Jackzon Smith A3 Londan DAL
3 1002 Johnzen John 40 Londan 33 3
4

1003 Ohama B arak. a1 Mevada 44444444

Pooja Pawar

13 Communicate from
other Applications

A Database is a structured way to store lots of information. The information is stored in
different tables. “Everything” today is stored in databases.

Examples:

e Bank/Account systems
e Information in Web pages such as Facebook, Wikipedia, YouTube
e .. lots of other examples

This means we need to be able to communicate with the database from other applications
and programming languages in order to insert, update or retrieve data from the database.

13.1 ODBC

ODBC (Open Database Connectivity) is a standardized interface (API) for accessing the
database from a client. You can use this standard to communicate with databases from
different vendors, such as Oracle, SQL Server, etc. The designers of ODBC aimed to make it
independent of programming languages, database systems, and operating systems.

We will use the ODBC Data Source Administrator:

€71 ODBC Data Source Administrator

UserDSH System DSH]File DSH] Drivers] Tracing] Connection Pooling] About]

System Data Sources:

Name | Diiver Add...
Default_Databaze Mational Instruments Citadel 5 0

LabvEw Microsoft Access Driver [*.mdb] Remove
Microsoft Access Driver [“.mdb,

Fireme Sample Database 2008 Microsoft Access Driver [*.mdb]

An ODBC System data source stores information about how ta connect to
the indicated data provider. A System data source is visible to all ugers
on this machine, including NT services.

Ok Aabryt Hielp

74

75

Communicate from other Applications

ODBC - Step by Step Instructions

Create New Data Source [X] [create aNew Data Source to saL Server %)
User DSN | system DSN | Fis DSN | Diivers | Tracing | Connection Pooing | About | = e Sy
Select a diver for which you want to set up a data source. Bt ?
User Data S ,
i)~ = = || = EE00eE Cogerion
Name <
‘Mictosolt dBase Driver - dbi] — Miciosolt Paradox T reber (b | T ’_éi
Excel Files Mictosoft Excel Driver [*.xis) Remove | Microsoft Text Driver (*.tat; ".csv) ¢ Name: |TEST
MS Access Database ".mdb) Microsoft Text-Treiber (*.txt; “.csv) 3 @l
Corie Microsoft Visual FoxPro Diiver 1 How do you wantto descilbe the deta souce?
! Descipion [
4 Which SQL Server do you want to connect 1o? (5
‘o Server. [PCE3Z35\DEVELOPMENT] <
>
The Name of your
@ An ODBC User o
Mooy diodds = SQL Server
N
oK Avbrt Hip | Fullor J§ M Fulfer Neste> | Aot | Hielp
,w*g;,(
Select the yaxv;;f I™ Use shong enciypien o dta
Server, _;008‘ ¥ Perform translation for character data
s G Database you are
o @ Clent Confiusation)
- 7 Comec0SOL et el s s o using for the
(7)) tosnid %u Library
Password: |1 =
2 3 A ew ODBC data source wil be created wih the folowing
7 Change the defuk database o (l corfaion
< Tibake 1 S 9 [Mictosoft SQL Server ODBC Diver Version 03.85.1132
=
5 s Pt T Atoch databossoname: < Tibake Fulte™| 1 [Data Souce Name: TEST
Use either o R -
: e
Windows or SQL 4 o et Dot Y
Log Long Running Queries: No
Server . og Diiver Stakisies: No
& Use Regonal Seltings: No
. . ¥ Use ANSI quoted identifiers.
authentication I v 451, packkn s et
; . r Test your e A0 NP e o
(Windows is y 2
: connection to see
simplest to use!) eride [Wee>] | Mwe || tb J
ifi 0K | Coresl
if its works = S)

13.2

Microsoft Excel

Microsoft Excel has the ability to retrieve data from different data sources, including
different database systems. It is very simple to retrieve data from SQL Server into Excel since
Excel and SQL Server has the same vendor (Microsoft).

Home Insert

Page Layout Formulas Data Review

% Cut

53 Copy

Paste
J Format Painter

View Developer Add

l ‘ E;;FWrap Text

:_E\] Merge & Center ~

[
O\DW\JO\U'J}UJNHk

A B C D E
tudentid B studentName B3/ studentNumber B3 Address___E3Phone B3|

3 Barak Obama 33333333333 White House 12
2 Jens Stoltenberg 22222222222 Pilstredet 45
1 John Cleese 11111111111 Pilstredet 12
4 Kurt Nilsen AAAAAAANAAA Karl Johan 34

45667722
66778899
12345678
44332277,

Pooja Pawar

76 Communicate from other Applications

Select your ODBC connection

EFE _D.'Lu

from "From From ‘Fromother | Bxting
b Text

Insert

Microsoft Excel

!‘E‘Y <, Clear

Respoly
Z) son | Fiter

2]

| Retresn =

@

Advanced

s .
(o0 J Lo WZJ
Fom From Feor | usting || Retresn — %} son
Kicess e A comectios || “An- = £ \

5 FromsqUse
T Coete s comneciontoa QL Semertale, import dbta
- 0 Excel a3 8 Table or ProtTable
N nom‘m'ymsmm(
(@ Create a connecton 10 SQUServer Anayis Services cube
9 import aata into Excel a5 a Table or PotTable report.
From XML Data Import
Open or map 2 XML ie into Excel

Databases | Queres | OLAP Cubes |
<Hew Data Souce>

From Data Connection Wizard
import dat "

Page Layout _ Formulas Review View Developer Addins A Home Page layout Formulas Review View Developer Add
'ﬂ |2) Connections I £ Clear
B % P
& T Properties s Reapply
From From From FromOther | [Existing || Refresh ot | Filter | retto e
Web Sousces= Il Connectiore|| AN 8 % % acancea ey 23 Copy

Access Text
o

Paste

j Format Painter

1
; F G|
g 1 smdenmame 2 Studenmumbev -
5 3 Barak Obama 33333333333 White House 12 45667722
: Classld 3 g:mm 2 Jens Stoltenberg 22222222222 Pilstredet 45 66778899
5 it | [fgdess . ' 1111111111 pilstredet12 12345678
9 Hicts) % {uery Wizard SFintsh 44444444444 KarlJohan34 44332277,
:z < > What would you lie to do next?
Preview of data in selected column:
12 on & Return Data to Mictasoft Office Excel 5
2 View data o edk quetyin Microsoh Query
5 o) o | optons... |
2 .
1 Finally, the data from the

database is in the Excel
sheet

@ <Tibske [Fuler | Ayt |

Pooja Pawar

14 References

Microsoft official SQL Server Web site - http://www.microsoft.com/sqlserver

SQL Server Books Online - http://msdn.microsoft.com/en---us/library/ms166020.aspx

SQL Server Help

w3shools.com -- http://www.w3schools.com/sql

Wikipedia — Microsoft SQL Server -- http://en.wikipedia.org/wiki/Microsoft SOL Server

Wikipedia -- SQL -- http://en.wikipedia.org/wiki/SQL

Wikipedia — Transact SQL - http://en.wikipedia.org/wiki/T---SOL

77

	Table of Contents
	1 Introduction to SQL
	 Microsoft SQL Server
	 Oracle
	 Introduction to Database Systems
	1.1 Data Definition Language (DDL)
	1.2 Data Manipulation Language (DML)

	2 Introduction to SQL Server
	2.1 SQL Server Management Studio
	2.1.1 Create a new Database
	2.1.2 Queries

	3 CREATE TABLE
	Example:
	Best practice:
	3.1 Database Modelling
	3.2 Create Tables using the Designer Tools
	3.3 SQL Constraints
	3.3.1 PRIMARY KEY
	Setting Primary Keys in the Designer Tools:

	3.3.2 FOREIGN KEY
	Setting Foreign Keys in the Designer Tools:
	3.3.3 NOT NULL / Required Columns
	Setting NULL/NOT NULL in the Designer Tools:

	3.3.4 UNIQUE
	Setting UNIQUE in the Designer Tools:

	3.3.5 CHECK
	Setting CHECK constraints in the Designer Tools:

	3.3.6 DEFAULT
	Setting DEFAULT values in the Designer Tools:
	3.3.7 AUTO INCREMENT or IDENTITY
	Setting identity(1,1) in the Designer Tools:

	3.4 ALTER TABLE

	4 INSERT INTO
	Insert Data Only in Specified Columns:
	Insert Data in the Designer Tools:

	5 UPDATE
	Update Data in the Designer Tools:

	6 DELETE
	Delete All Rows:
	Delete Data in the Designer Tools:

	7 SELECT
	Select Data in the Designer Tools:
	7.1 The ORDER BY Keyword
	7.2 SELECT DISTINCT
	7.3 The WHERE Clause
	7.3.1 Operators
	7.3.2 LIKE Operator
	7.3.3 IN Operator
	7.3.4 BETWEEN Operator

	7.4 Wildcards
	7.5 AND & OR Operators
	Combining AND & OR:

	7.6 SELECT TOP Clause
	7.7 Alias
	7.8 Joins
	7.8.1 Different SQL JOINs

	8 SQL Scripts
	8.1 Using Comments
	8.1.1 Single-­‐line comment
	8.1.2 Multiple-­‐line comment

	8.2 Variables
	8.3 Built-­‐in Global Variables
	8.3.1 @@IDENTITY
	Example:

	8.4 Flow Control
	8.4.1 IF – ELSE
	BEGIN…END:
	BEGIN…END.

	8.4.2 WHILE
	Example:

	8.4.3 CASE
	8.4.4 CURSOR
	Example:

	9 Views
	Example:
	9.1 Using the Graphical Designer

	10 Stored Procedures
	Example:
	Example: (1)
	10.1 NOCOUNT ON/NOCOUNT OFF
	Example:

	11 Functions
	11.1 Built-­‐in Functions
	11.1.1 String Functions
	11.1.2 Date and Time Functions
	11.1.3 Mathematics and Statistics Functions
	11.1.4 AVG()
	11.1.5 COUNT()
	11.1.6 The GROUP BY Statement
	11.1.7 The HAVING Clause

	11.2 User-­‐defined Functions

	12 Triggers
	INSERTED and DELETED:
	Example:

	13 Communicate from other Applications
	13.1 ODBC
	13.2 Microsoft Excel

	14 References

